📌Apple приобрела компанию Datakalab, занимающуюся проектами на базе ИИ
🟡Apple купила французский стартап Datakalab, который специализируется на технологиях сжатия данных искусственного интеллекта и компьютерного зрения.
🟡Datakalab позиционирует себя как «эксперта в области маломощных эффективных алгоритмов глубокого обучения», работающих на устройствах. Стартап создаёт алгоритмы для анализа изображений и видео. Один из продуктов компании — инструмент для отслеживания наличия масок на лицах пассажиров общественного транспорта Парижа.
Полученные стартапом изображения мгновенно преобразуются в анонимные статистические данные, обрабатываемые локально за 100 мс. Стартап не хранит изображения или личные данные, а только статистические данные.
🟡Datakalab имеет несколько патентов, связанных с технологиями сжатия данных ИИ и машинного зрения.
🟡Приобретение стартапа, вероятно, обусловлено планами Apple предоставить набор ИИ-функций в iOS 18. Datakalab разработала передовую технологию на базе машинного обучения, которая может сыграть роль в развитии гарнитуры смешанной реальности Vision Pro.
Кстати, в начале 2024 года корпорация купила стартап WaveOne, который предлагает ИИ-алгоритм для сжатия видео.
@ai_machinelearning_big_data
🖼 HiDiffusion: Unlocking High-Resolution Creativity and Efficiency in Low-Resolution Trained Diffusion Models 🦊
Новый метод, не требующий обучения, который повышает о и скорость предварительно обученных моделей diffusion.
Его можно интегрировать в конвейеры diffusion, добавив всего одну строку кода!pip3 install hidiffusion
• page: https://hidiffusion.github.io
• paper: https://arxiv.org/abs/2311.17528
• code: https://github.com/megvii-research/HiDiffusion
•colab: https://colab.research.google.com/drive/1EiBn9lSnPZTU4cikRRaBBexs429M-qty?usp=sharing
@ai_machinelearning_big_data
🍏 OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework by Apple
Сегодня Apple выпустили Openly.
- Новое семейство LM с открытым исходным кодом для обучения моделей и логического вывода
- Работает наравне с OLMo, но требует в 2 раза меньше токенов для обучения
- Модели для различных задач, включая базовые модели (например, CLIP и LLM), классификацию объектов, обнаружение объектов и семантическую сегментацию.
Cписок моделей и подробная информации о каждой из них:
- OpenELM-270M
- OpenELM-450M
- OpenELM-1_1B
- OpenELM-3B
- OpenELM-270M-Instruct
- OpenELM-450M-Instruct
- OpenELM-1_1B-Instruct
- OpenELM-3B-Instruct
• gitHub: https://github.com/apple/corenet
• hf: https://huggingface.co/apple/OpenELM
• abs: https://arxiv.org/abs/2404.14619
@ai_machinelearning_big_data
Залетай на «Технолето» и прокачайся в ML-сфере
Приглашаем студентов и начинающих специалистов в области машинного обучения на стажировку «Технолето» от Яндекса. Участников ждет масштабная программа карьерных и развлекательных мероприятий. Стажеры смогут не только углубить свои навыки в IT, но и поближе познакомиться с культурой Яндекса: пообщаться с топовыми специалистами компании, пройтись с интерактивной экскурсией по офисам, посетить дата-центр, а также отдохнуть на диджей-сетах и Алгорейв-вечеринках.
Студенты, желающие изучить сферу машинного обучения, освоят востребованные в индустрии навыки ML-сферы и погрузятся во все тонкости направления. На стажировке также можно освоить фронтенд, бэкенд, мобильную разработку, девопс и не только.
Стажировка действует круглый год и длится три, четыре или шесть месяцев в зависимости от графика, который выбрал участник.
Чтобы поучаствовать в программе, достаточно оставить заявку и решить тестовое задание.
Удачи и ждем вас на «Технолето»!
GitVerse – теперь и для малого и среднего бизнеса
На онлайн-презентации «GitVerse: открой вселенную кода» СберТех рассказал про новые фичи платформы. Cреди них – CI/CD-инструменты, ускоряющие разработку, и новые функции GigaCode – персонального AI-ассистента разработчика (AI, artificial intelligence — искусственный интеллект).
Но это еще не все: теперь возможности GitVerse доступны не только индивидуальным разработчикам, но и малому и среднему бизнесу. Это очень удобно: можно организовывать совместную работу команды с GitVerse и управлять доступами к своим репозиториям.
Готовы попробовать? Присоединяйтесь.
⚡️ Поисковик Brave научился отвечать на вопросы с помощью ИИ
Ориентированная на конфиденциальность поисковая система Brave расширила функциональность своей системы ответов на запросы пользователей с помощью ИИ.
Теперь при вводе запроса в Brave в поле выдачи сперва отображается выжимка от AI с ссылками на источники, и только потом сайты.
Выглядит наподобие Perplexity и Phind.
▶️ Пробуйте)
@ai_machinelearning_big_data
⚡️ AI Safety — бенчмарк для оценки безопасности AI
⏩Некоммерческий проект MLCommons, занимающийся созданием и поддержкой бенчмарков, широко используемых в ИИ-индустрии, анонсировал новую разработку. Речь идёт об инструменте — AI Safety v0.5, позволяющем оценивать безопасность ИИ-систем.
⏩AI Safety v0.5 находится на стадии proof-of-concept и позволяет оценивать большие языковые модели (LLM), стоящие за современными чат-ботами, анализируя ответы на запросы из «опасных категорий». Необходимость в появлении такого инструмента давно назрела, поскольку технологию оказалось довольно легко использовать в неблаговидных и даже опасных целях. Например, можно применять для подготовки фишинговых атак и совершения других киберпреступлений, а также для распространения дезинформации и разжигания ненависти.
⏩Хотя измерить безопасность довольно сложно с учётом того, что ИИ используется в самых разных целях, в MLCommons создали инструмент, способный разбираться с широким спектром угроз. Например, он может оценивать, как бот отвечает на запрос о рецептах изготовления бомбы, что отвечать полиции, если пойман за созданием взрывного устройства и т.п. Каждая модель «допрашивается» серией тестовых запросов, ответы на которые потом подлежат проверке. LLM оценивается как по каждой из категорий угроз, так и по уровню безопасности в целом.
⏩Бенчмарк включает более 43 тыс. промтов. Методика позволяет классифицировать угрозы, конвертируя ответы в понятные даже непрофессионалам характеристики, вроде «высокий риск», «умеренно-высокий риск» и т.д. При этом представители организации заявляют, что LLM чрезвычайно трудно оценивать по ряду причин.
⏩Бенчмарк AI Safety v0.5 уже доступен для экспериментов и организация надеется, что исходные тесты сообществом позволят выпустить усовершенствованную версию v1.0 позже в этом году. Платформа открыта для предложений новых тестов и интерпретации результатов.
▶️ Страничка проекта
@ai_machinelearning_big_data
🔎 Moving Object Segmentation:All You Need Is SAM (and Flow)
SAM + Optical Flow = FlowSAM
FlowSAM - новый инструмент для обнаружения и сегментации движущихся объектов на видео, который значительно превосходит все предыдущие модели, как для одного объекта, так и для множества объектов 🔥
▪ Project page: https://www.robots.ox.ac.uk/~vgg/research/flowsam/
▪ Code: https://github.com/video2game/video2game
▪Paper: https://arxiv.org/abs/2404.12389
▪ Data: https://drive.google.com/drive/folders/1tmDq_vG_BvY5po40Ux5OBds1avUM_CbR
@ai_machinelearning_big_data
⁉️ Как следить за жизненным циклом ML-моделей, чтобы вовремя их корректировать?
💻 Узнайте на бесплатном практическом уроке «MLFlow и переобучение ML-моделей» от OTUS.
На вебинаре вы узнаете:
- как экспериментировать сразу с несколькими ML-моделями с разными гиперпараметрами;
- как, проводя регулярное переобучение, сравнивать качество работы моделей и выбирать лучший результат;
- как не потерять накопленный опыт и воспроизводить более ранние эксперименты.
👉 Встречаемся 24 апреля в 20:00 мск в рамках курса «MLOps». Все участники вебинара получат специальную цену на обучение и консультацию от менеджеров OTUS!
🔥 Пройдите короткий тест прямо сейчас, чтобы посетить бесплатный урок: https://otus.pw/Qnnd/
📌Intel представила нейроморфный компьютер Hala Point — «искусственный мозг» с 1,15 млрд нейронов
🟡Компания Intel создала самый большой в мире нейроморфный компьютер под названием Hala Point. Это революционное устройство, предназначенное для имитации деятельности человеческого мозга. Производитель утверждает, что новинка в 50 раз превосходит любые аналогичные вычислительные системы, но при этом потребляет в 100 раз меньше энергии.
🟡Устройство построено на базе 1152 чипов Loihi 2 с 140 544 вычислительными ядрами и содержит в себе 1,15 млрд «искусственных нейронов», способных выполнять до 380 трлн синаптических операций в секунду. Еще в состав Hala Point включены 2300 упрощенных x86-процессоров, предназначенных для выполнения вспомогательных операций.
🟡При этом общая пропускная способность памяти устройства достигает значения в 16 ПБ/с. Все это помещено в довольно компактный корпус, напоминающий по размерам микроволновую печь. Потребление устройства составляет 2600 Вт. По словам разработчиков, их система является кремниевым аналогом мозга совы.
🟡Hala Point способна достигать впечатляющей вычислительной эффективности, превышающей 20 квадриллионов 8-битных операций в секунду при развертывании глубоких нейросетей. Стоит отметить, что данная система существует в виде прототипа, а Intel пока не планирует отправлять ее в массовое производство. Единственный экземпляр Hala Point находится в Сандийских национальных лабораториях в США. Местные ученые будут использовать его для исследований в области нейронных сетей.
📎 Подробнее
@ai_machinelearning_big_data
⚡️ Стартап Reka показал новую мультимодальную LLM Reka Core
🟡Стартап Reka, основанный бывшими разработчиками DeepMind, представил свою последнюю разработку в области искусственного интеллекта — мультимодальную языковую модель (LLM) под названием Reka Core. Эта передовая нейросеть способна обрабатывать текст, изображения, аудио и видео, чем выделяется среди других технологий в своем классе.
🟡Reka Core обладает впечатляющим контекстным окном на 128 000 токенов и поддерживает обработку данных на 32 языках, что делает её одной из самых мощных и универсальных систем на рынке. Эта функциональность открывает новые возможности для разработчиков и исследователей в области ИИ, позволяя модели эффективно справляться с задачами обработки больших объемов разнообразных данных.
🟡В ряде мультимодальных оценок Reka Core продемонстрировала результаты, превосходящие показатели таких известных моделей, как Claude 3 Opus и Gemini Ultra. Особенно заметно это стало в области обработки видеоконтента, где Reka Core вышла на первое место, превзойдя Gemini Ultra. Кроме того, модель показала конкурентоспособные результаты с GPT-4 в задачах по пониманию изображений, что свидетельствует о высоком качестве и универсальности разработки.
🟡Компания Reka активно сотрудничает с такими гигантами, как Oracle и Snowflake, что позволяет ей расширять свои возможности и укреплять позиции на рынке.
▶️ Сайт Reka.ai (можно сразу открыть чат)
@ai_machinelearning_big_data
🦾 🦏 Power of matplotlib
Вот такую красоту можно сделать с помощью matplotlib. Это визуализация гравюры немецкого художника Альбрехта Дюрера, изображающая индийского носорога, каким его представлял художник по доступным ему описаниям и рисункам в 1515.
Хотите научиться та к же: вот крутая бесплатная книга: "Научная визуализация: Python + Matplotlib"
Исходники книги c примерами кода лежат здесь.
▪Постер
▪Книга
▪Код из книги
@ai_machinelearning_big_data
Студенты факультета компьютерных наук ВШЭ, основанного совместно с Яндексом, выиграли чемпионат мира по программированию ICPC.
Соревнования проходили в Египте, причем как для 2022, так и для 2023 года. Российские студенты заняли призовые места сразу в двух соревнованиях.
За 2023 год абсолютными чемпионами стала команда FFTilted (к слову, ребята с программы Прикладной математики и информатики, которую основал на факультете Яндекс). Ее участники — Фёдор Ромашов, Александр Бабин и Кирилл Кудряшов. За 2022 год команда Undertrained+Overpressured заняла третье место в абсолютном зачете. Ее представляли Максим Гороховский, Иван Сафонов и Тимофей Федосеев.
Команды показали лучший результат среди всех российских вузов. Всего в соревнованиях приняли участие команды из 170 университетов и 50 стран мира.
🌐 X5 Data Science Meetup #3
Бурный рост эффективности ML систем провоцирует дискуссии. X5 Tech приглашает экспертов в Data Science, чтобы обсудить, как с помощью новых методов и подходов победить неэффективные процессы.
📌 В повестке — проверенные и новые методы взаимодействия с пользователями: от рекомендаций музыки до генерации контента и чат-ботов на основе ИИ, а также сложности: галлюцинации, мониторинг языковых моделей, методы улучшения RAG-систем.
✅ Встречаемся 25 апреля в пространстве Articon (также будет онлайн-трансляция)
Старт в 19:00
После митапа - AFTER PARTY 🎉
Все подробности и регистрация - по ссылке
__
Реклама. ООО "Корпоративный центр ИКС 5", ИНН: 7728632689, erid: LjN8KRWxx
🔥 Нейросети без цензуры: какие LLM ответят на любые вопросы
🟡 FuseChat-7B-VaRM. Хороший вариант для общения, без цензуры и ограничений. По сути, это три чат-бота, объединенных в один, каждый со своими особенностями. Это значит, что пользователь получает интересные беседы независимо от того, о чем хочет поговорить.
🟡 Chimera-Apex-7B. Создана для обычных разговоров и генерации не совсем обычных идей. Хороший приятель для мозгового штурма, который не боится быть немного диким. Все еще находится в стадии разработки, так что еще можно ждать сюрпризов.
🟡 Dolphin-2.8-experiment26-7b. Это тонкая настройка экспериментальной модели, которая зарекомендовала себя как лучшая с 7 млрд параметров. Это как усовершенствованная версия модели, в которой устранены все недостатки и оптимизирована производительность.
🟡 Nous-Hermes-2-Mistral-7B-DPO. Эта модель представляет собой значительное улучшение: она демонстрирует повышенную производительность в различных бенчмарках по сравнению со своими предшественниками. Особого внимания заслуживает ее применение в средах без цензуры. Сфокусирована на предоставлении качественных ответов, основанных на данных, что делает ее отличным кандидатом для тех, кто ищет продвинутые, неограниченные возможности LLM.
🟡 UNA-TheBeagle-7b-v1. Обучена на наборе данных The Bagel с использованием прямой оптимизации предпочтений (DPO) и UNA. Модель основана на нейро-чате Intel.
🟡 Nous Hermes 2 — SOLAR 10.7B. Новая модель от Nous Research, основанная на SOLAR 10.7B. Обучена на большом датасете, который состоит в основном из данных, сгенерированных GPT-4, и дополнительных ресурсов. По бенчмаркам почти достигла уровня производительности модели Yi-34B. Работает с системными промтами, что дает возможность пользователям определять правила, роли.
🟡 Dolphin 2.6 Mistral 7b — DPO Laser. Это языковая модель без цензуры, основанная на работе LASER. Благодаря более широкому контекстному окну в 16 тыс. токенов и таким передовым методам, как SVD и RMT, эта модель без цензуры выдает более надежные результаты, чем ее предшественники. Она идеальна для ролевых сценариев благодаря широкому диапазону ответов.
🟡 Dolphin-2.2.1-mistral-7b. Разработана Эриком Хартфордом и спонсируется a16z. Работает под лицензией Apache-2.0 и представляет собой универсальный инструмент как для коммерческих, так и для некоммерческих приложений. Одной из особенностей Dolphin-2.2.1-mistral-7b считается ее стремление к развитию содержательного общения. Набор данных был тщательно отфильтрован, чтобы устранить любую предвзятость, благодаря чему модель стала более послушной и может обеспечить нейтральный и открытый подход к генерации текста.
🟡 Zephyr 7B Alpha. Начальная итерация в серии больших языковых моделей Zephyr, известной своей емкостью в 7 млрд параметров. Эта версия mistralai/Mistral-7B-v0.1, усовершенствованной в процессе тонкой настройки с использованием комбинации общедоступных и синтетических наборов данных по методологии, известной как прямая оптимизация предпочтений (DPO).
🟡 Emerhyst-20B. Эта языковая модель без цензуры объединяет в себе сильные стороны двух популярных моделей, Amethyst 13B и Emerald 13B. Такой подход позволяет основной модели унаследовать лучшие черты от своих «родителей», создавая универсальный и эффективный генератор текстов. Для дальнейшего расширения возможностей Emerhyst-20B создатели использовали LimaRP v3, передовой инструмент для обучения больших языковых моделей.
Enjoy)
@ai_machinelearning_big_data
PyTorch 2.3 is here 😎🔥
Вышел PyTorch 2.3.
В PyTorch 2.3 реализована поддержка пользовательских ядер Triton в torch.compile, что позволяет пользователям переносить свои собственные ядра Triton без снижения производительности или сбоев в графике.
Triton – это языковой компилятор для создания сильно оптимизированных ядер CUDA.
В этом выпуске зафиксировано 3393 изменений.
Полный список обновлений: https://pytorch.org/blog/pytorch2-3/
@ai_machinelearning_big_data
В России появилась новая платежная система — KWIKPAY
Деньги приходят моментально с карт российских банков в другие страны, в том числе в ЕС.
Уже сейчас можно отправить деньги в Казахстан, Турцию, Израиль, Кипр, Грецию, Узбекистан и Киргизию.
Компания зарегистрирована в ЦБ РФ, на их сайте легко найти всю нужную информацию и документы
Скачать приложение можно здесь
Erid: 2VtzqwBS1VA Реклама. ООО КВИКПЭЙ ИНН: 7714437215
⚡️🗣 OpenVoice V2 - a Text-to-Speech model that can clone any voice and speak in any language.
OpenVoice V2 - новая версия открытой модели преобразования текста в речь, которая позволяет клонировать любой голос и генерировать речь на различных языках.
• Github: https://github.com/myshell-ai/OpenVoice/tree/main
• Usage: https://github.com/myshell-ai/OpenVoice/blob/main/docs/USAGE.md
@ai_machinelearning_big_data
🔥 AI Image Generator: Create images from text.
Новое поколение #Photoshop уже здесь.
Adobe добавили ИИ-инструменты в Photoshop на базе новой модели Firefly Image 3. Модель может самостоятельно подобрать или изменить фон, сгенерировать похожие изображения, генерировать изображения из пропитав .
Полный список обновлений здесь.
▪Blog
▪Demo
@ai_machinelearning_big_data
🪄👕 Magic Clothing: controllable garment-driven image synthesis
Вышла модель Waifu Dress Up 2024!
Magic Clothing позволяет создавать персонажей, одетых в заданную одежду, на основе промпта и входного изображения. git clone https://github.com/ShineChen1024/MagicClothing.git
▪Github
▪Paper
@ai_machinelearning_big_data
erid: 2Ranyng8yqS
CodeFest — это ежегодная тёплая ламповая айтишная конференция, на которую слетаются русскоговорящие айтишники с разных уголков страны, чтобы встретиться с коллегами, поделиться новостями и обсудить последние тенденции в мире разработки.
Ключевые направления программы: Backend, Frontend, Management, QA, Data Science, Mobile, Design, Web 3, System Аnalysis, а также дискуссионный народный поток Kvartirniki и вдохновляющие Keynote выступления от айти-звёзд.
Изюминка CodeFest — неформальное общение, которого много, которое невероятно дружелюбное, и зачином для которого служат те самые выступления в ключевых секциях. Начали с доклада в зале — закончили спонтанным митапом в холле.
Присоединяйтесь к невероятной атмосфере конференции:
■ 25-26 мая, Новосибирск, Экспоцентр.
■ 1800 участников на одной площадке.
■ Участие офлайн и онлайн.
■ Более 120 докладов.
■ Насыщенная программа от партнёров конференции.
Приезжайте командой, участвуйте лично.
Регистрация 👉 https://l.codefest.ru/ai_machinelearning_big_data
Реклама. АО "Тинькофф Банк", ИНН 7710140679, лицензия ЦБ РФ № 2673
I’ML — конференция для тех, кто использует в проектах машинное обучение.
🌐 21–22 мая, онлайн
В программе — два десятка докладов об NLP-разработке, MLOps, компьютерном зрении, рекомендательных системах, Advanced Analytics, продуктах на основе ML.
После каждого доклада пройдут дискуссии при участии спикеров, где участники задают профессиональные вопросы и обмениваются мнениями с коллегами по цеху.
Выступают специалисты из крупных технологических компаний:, Яндекс. VK, Циан, Сбер и Тинькофф.
Билеты можно купить за счет компании. Для тех, кто покупает билеты сам, у нас есть промокод на скидку 10%: MACHINELEARNING
Реклама. ООО «Джуг Ру Груп». ИНН 7801341446
🌟 Рост популярности Anthropic Claude: вызовы и перспективы для OpenAI
🟡В последнее время наблюдается значительный рост популярности платформы Anthropic Claude. Согласно данным SimilarWeb, посещаемость этой платформы значительно возросла за последние месяцы.
В то время как Anthropic Claude продолжает завоевывать пользователей, платформа ChatGPT от OpenAI испытывает снижение по трафику уже почти год. Сравнение данных показывает, что Claude обгоняет не только ChatGPT, но и других конкурентов.
🟡Одной из причин успеха Claude может быть недавний запуск 3 поколения разработки Anthropic, что, по мнению некоторых аналитиков, придало платформе значительное преимущество.
🟡Anthropic Claude 3 поколения является последней разработкой компании Anthropic в области искусственного интеллекта. Этот инструмент представляет собой мощную платформу, способную генерировать тексты, отвечать на вопросы и взаимодействовать с пользователями на уровне, близком к человеческому.
🟡Одной из ключевых причин, почему Anthropic Claude 3 поколения представляет угрозу для ChatGPT, является его улучшенная способность понимания контекста и генерации более качественных ответов. Claude обладает более развитой моделью понимания языка и обучен на более обширном корпусе текстов, что позволяет ему создавать более информативные и связные ответы на запросы пользователей.
📎 Исследование о популяризации Claude от SimilarWeb
@ai_machinelearning_big_data
🔥🎮 Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video
Video2Game - фреймворк, который позволяет преобразовывать видео в реалистичную и интерактивную игровую среду!
В основе модели лежат ри основных компонента: (i) NeRF, который отображает геометрию и пространство сцены; (ii) mesh модуль, который использует NeRF для ускорения рендеринга; и (iii) физический модуль, который моделирует физическую динамику и взаимодействие объектов.
Встроенные агенты могут свободно перемещаются по местности в виртуальной среде, где их действия соответствуют физике реального мира. Игроки могут взаимодействовать с объектами на сцене, подчиняясь физическими законами.
▪ Project page: https://video2game.github.io
▪ Code: https://github.com/video2game/video2game
▪ Demo: https://video2game.github.io/src/garden/index.html
@ai_machinelearning_big_data
🔥 Пройди бесплатный тест и узнай, готов ли ты к обучению по Natural Language Processing
⁉️ Готов ли ты разобраться, как устроены чат-боты? Освоить RAG, Langchain, Fine Tuning?
Пройди короткий тест и получи специальную цену на обучение и 3 полезных урока в подарок!
🚀 Давай же, это быстро и очень полезно для твоей карьеры: https://otus.pw/T7FO/?erid=LjN8KLUpQ
🏥Вы знали, что ИИ уже активно используется в больницах и поликлиниках?
Расскажет от этом Николай Павлов, гуру ИИ из SnkeOS GmbH. Встречаемся на бесплатном практическом уроке от OTUS, где разберём:
- Эксклюзивный эксперимент, рождающий медицинское чудо в Москве!
- Главные параметры для настройки ИИ;
- Какие критерии качества работы ИИ используются в оценке;
- Инструкции как устроена подготовка медицинских датасетов для валидации ИИ.
🎯 Открытый урок вам подойдёт, если вы:
- IT-эксперт, думающий о карьере в передовой медтехнологии!
- Менеджерам, которые привлекают или хочет привлекать сложные, но красивые проекты;
- ИИ-энтузиаст, готовый внедрять будущее пост современной медицины!
⏳ Не медлите! Время ограничено, а открытые уроки не ждут! Ждём вас 23 апреля в 20:00 мск.
🔗Регистрируйтесь прямо сейчас, чтобы занять место на открытом уроке и получить запись: https://otus.pw/LP4Y/
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8KHR8C
Нет опыта в IT, но дружишь с логикой и алгоритмами? Успей до 20 апреля на тест-драйв своих цифровых навыков на «Цифровом марафоне» Сбера и «Школы 21»! Возможно, именно ты получишь умные девайсы и мерч.
Тебя ждут онлайн-игра на логику и мягкие навыки, тестирование и возможно даже цифровой диктант, на котором нужно написать код решения. Общее количество заработанных очков определит твоё место в рейтинге, а первой семёрке счастливчиков вручат умные девайсы и мерч от Сбера. Церемонию награждения победителей проведут 28 июня в центральном офисе Сбера в Москве.
Регистрация участников заканчивается совсем скоро. Убедись, что тебе уже есть 18 лет, и скорее жми «Хочу участвовать»
🦙 Файнтюниг Llama 3 с помощью ORPO.
Краткое руководство о том, как настроить новую модель Llama 3 8B с ORPO.
Надеюсь, вам понравится!
🤗 Модель: https://huggingface.co/mlabonne/OrpoLlama-3-8B
💻 Colab: https://colab.research.google.com/drive/1eHNWg9gnaXErdAa8_mcvjMupbSS6rDvi?usp=sharing
📝 Статья: https://huggingface.co/blog/mlabonne/orpo-llama-3
@ai_machinelearning_big_data
⚡️ Graph Machine Learning
Бесплатный продвинутый курс: Машинное обучение на графах.
Курс регулярно дополняется практическими задачками и слайдами. Автор Ксавье Брессон - профессор национального университета Сингапура.
▪Введение
▪Погружение в графы
- Lab1: Generate LFR social networks
https://github.com/xbresson/GML2023/blob/main/codes/02_Graph_Science/code01.ipynb
- Lab2: Visualize spectrum of point cloud & grid
https://github.com/xbresson/GML2023/blob/main/codes/02_Graph_Science/code02.ipynb
- Lab3/4: Graph construction for two-moon & text documents
https://github.com/xbresson/GML2023/blob/main/codes/02_Graph_Science/code03.ipynb
https://github.com/xbresson/GML2023/blob/main/codes/02_Graph_Science/code04.ipynb
▪Кластеризация графов
- Lab1: k-means
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code01.ipynb
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code02.ipynb
- Lab2: Metis
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code03.ipynb
- Lab3/4: NCut/PCut
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code04.ipynb
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code05.ipynb
- Lab5: Louvain
https://github.com/xbresson/GML2023/blob/main/codes/03_Graph_Clustering/code06.ipynb https://pic.twitter.com/vSXCx364pe
▪Лекции 4 Graph SVM
- Lab1: Standard/Linear SVM
https://github.com/xbresson/GML2023/blob/main/codes/04_Graph_SVM/code01.ipynb
- Lab2: Soft-Margin SVM
https://github.com/xbresson/GML2023/blob/main/codes/04_Graph_SVM/code02.ipynb
- Lab3: Kernel/Non-Linear SVM
https://github.com/xbresson/GML2023/blob/main/codes/04_Graph_SVM/code03.ipynb
- Lab4: Graph SVM
https://github.com/xbresson/GML2023/blob/main/codes/04_Graph_SVM/code04.ipynb
Инструкции по запуску: https://storage.googleapis.com/xavierbresson/lectures/CS6208/running_notebooks.pdf
💡 Github
@ai_machinelearning_big_data
👑Llama 3 is here, with a brand new tokenizer! 🦙
Вышла Llama 3
Сегодня вышла новая SOTA Llama 3 в двух версиях на 8B и 70B параметров.
Длина контекста 8К, поддержка 30 языков.
•HF: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
•Blog: https://ai.meta.com/blog/meta-llama-3/
Вы можете потестить 🦙 MetaLlama 3 70B и 🦙 Meta Llama 3 8B с помощью 🔥 бесплатного интерфейса: https://llama3.replicate.dev/
@ai_machinelearning_big_data