bigdatai | Unsorted

Telegram-канал bigdatai - Big Data AI

15160

@haarrp - админ Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям @data_analysis_ml - анализ данных @ai_machinelearning_big_data @itchannels_telegram - важное для программиста

Subscribe to a channel

Big Data AI

⚡️Announcing Groq Summary!

Расширение с открытым исходным кодом для использования Groq в браузере.

📌 Github: https://github.com/jose-mdz/groq-chrome-ext

📌 Расширение: summary/lfehmciachpbanabhdgccidilnnkffjn

@bigdatai

Читать полностью…

Big Data AI

🔍 Steel Browser — инструмент для автоматизации браузера с поддержкой API, который работает в облаке!

🌟 Он позволяет запускать сессии Puppeteer, Playwright, и Selenium, обеспечивая низкое время запуска (менее секунды при нахождении клиента в том же регионе) и продолжительные сессии до 24 часов. Steel предлагает возможности управления сессиями, включая сохранение и повторное использование cookies и локального хранилища, а также встроенные механизмы для обхода CAPTCHA и маскировки подлинности браузера.

🌟 Проект направлен на упрощение автоматизации браузеров, предоставляя интеграцию с популярными инструментами и обеспечивая высокую производительность. Steel предназначен для разработчиков, работающих с браузерной автоматизацией, и предоставляет функции мониторинга и отладки через встроенный Session Viewer.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔥 Bolt.diy — это проект с открытым исходным кодом, позволяющий разрабатывать полнофункциональные веб-приложения с использованием генеративных AI-моделей!

🌟 Инструмент поддерживает интеграцию с такими моделями, как OpenAI, Anthropic, HuggingFace и другими, через единый API.

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔥 Курс Математика Машинного обучения: Что такое тензоры.

📌 Видео
📌Colab с кодом

@data_math

Читать полностью…

Big Data AI

✔️ OpenAI представила функцию «Проекты» для ChatGPT.

OpenAI анонсировала новую функцию «Проекты» для своего чат-бота ChatGPT. Эта функция позволит пользователям группировать чаты и данные, упрощая использование ChatGPT для конкретных задач.

Пользователи смогут объединять в проекты пользовательские данные, разговоры, GPT и простые чаты. Каждый чат в проекте будет иметь доступ ко всей информации внутри него. OpenAI продемонстрировала "Проекты" на седьмом по счету стриме цикла анонсов "12 Days of OpenAI"
openai.com

✔️ Anthropic разработала платформу для анализа использования больших языковых моделей.

Anthropic создала платформу Clio для изучения особенностей применения больших языковых моделей в реальных условиях. Clio использует LLM для анализа миллионов диалогов, выявляя общие закономерности использования без нарушения конфиденциальности пользователей. Платформа группирует диалоги по схожести, создаёт обобщённые описания тем и определяет возможные нарушения правил использования. В отличие от традиционных методов, Clio не предполагает просмотра диалогов людьми.

Anthropic применяет Clio для повышения безопасности Claude. Clio помогает выявлять скоординированные злоупотребления и отслеживать неизвестные угрозы, особенно в важные периоды запуска новых функций. Компания планирует сделать Clio доступной для общественности с целью формирования культуры прозрачности в сфере ИИ.
anthropic.com

✔️ NVIDIA QUEEN: алгоритм потоковой передачи видео с произвольной точкой обзора.

QUEEN (QUantized Efficient ENcoding) - это новый алгоритм, разработанный NVIDIA для эффективного кодирования и потоковой передачи видео с произвольной точкой обзора. QUEEN использует динамические гауссианы для представления сцены, что позволяет достичь высокого качества изображения при минимальном размере модели.

Алгоритм способен сократить размер модели до 0,7 МБ на кадр, обеспечивая при этом быстрое обучение (менее 5 секунд) и высокую скорость рендеринга (около 350 кадров в секунду). QUEEN основан на квантовании и разрежении атрибутов гауссиан и использует адаптивную маскирующую технику для разделения статического и динамического контента.
research.nvidia.com

✔️ Microsoft представила новую модель Phi-4.

Новая языковая модель Phi-4 от Microsoft Research демонстрирует производительность, сравнимую с гораздо более крупными моделями, используя всего 14 миллиардов параметров. Phi-4 превосходит свою обучающую модель, GPT-4, в ответах на вопросы по науке и технике и демонстрирует особую эффективность в математике: 56,1% правильных ответов на вопросы университетского уровня и 80,4% на задачи из математических олимпиад.

Phi-4 уже доступна в рамках ограниченного превью на платформе Azure AI Foundry для исследовательских целей. В открытый доступ Phi-4 будет опубликована на следующей неделе.
techcommunity.microsoft.com

✔️ Cadbury борется с искусственным интеллектом, засоряя обучающие данные бессмыслицей.

Индийский филиал кондитерской компании Cadbury начал рекламную кампанию под названием «Сделаем ИИ посредственным снова», целью которой является замедлить развитие искусственного интеллекта путем внесения искажений в обучающие данные.

Компания создала «первую в мире серверную ферму», генерирующую тысячи синтетических веб-сайтов, заполненных бессмысленным текстом. Цель состоит в том, чтобы «загрязнить» данные, которые модели искусственного интеллекта собирают из Интернета, вызывая ошибки, требующие постоянного вмешательства человека.
techspot.com

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Big Data AI

Освойте универсальные навыки в мире цифровых профессий — научитесь работать с SQL, Python, Power BI и DataLens на бесплатном курсе от Нетологии.

В результате вы:

— разберётесь в основах Python для анализа данных и узнаете, как извлекать информацию.

— научитесь делать запросы и отчёты с помощью SQL.

— сможете строить интерактивные дашборды в Power BI и DataLens.

Курс подойдёт новичкам и тем, кто хочет расширить свои навыки.

Присоединяйтесь

🎁 После бесплатного курса вы пройдете карьерную консультацию и сможете дальше развивать навыки на курсе Аналитик данных или Data Scientist в Нетологии с выгодой до 50%.

Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5yHKtgp

Читать полностью…

Big Data AI

Салют от команды GigaChat! Приглашаем на конференцию по технологиям ИИ

📆 17 декабря, 12:30 (МСК, GMT+3)
📍 Офлайн в Москве. Для посещения в офлайне нужно дождаться приглашения от организаторов.
🌐 Онлайн-трансляция на сайте SberDevices

В программе — 9 докладов о том, как ИИ учится говорить, слышать, фильтровать данные и помогать людям. Спикеры расскажут про создание ИИ-агентов и персонажей, эмбеддинги и навыки моделей. Поделятся способами фильтровать данные и быстро обучать мощные модели.

Вас ждут новости разработки GigaChat и ассистента Салют, а также расскажут про open-source модели.

Участвуйте в дискуссиях с другими участниками и задавайте вопросы спикерам во время докладов. А офлайн-участников ждут афтерпати и стенды с технологиями: можно будет протестировать GigaChain и технологии GigaChat Audio, а также поработать с гипотезами в GigaPlayground.

Для участия нужно зарегистрироваться на сайте.

Больше подробностей — в Telegram-канале конференции.

Реклама. ПАО Сбербанк. ИНН 7707083893

Читать полностью…

Big Data AI

📌 Пятидневный интенсивный курс по GenAI от Google и Kaggle.

Google совместно с Kaggle представили пятидневный интенсивный курс по генеративному искусственному интеллекту, который доступен в формате самостоятельного обучения.

Курс, который проходил в прямом эфире с 11 по 15 ноября 2024 года, охватывает базовые технологии и методы генеративного ИИ. Программа включает изучение базовых моделей, инженерии промптов, векторных баз данных и эмбедингов, ИИ-агентов, специализированных моделей для конкретных областей и MLOps для GenAi.

Каждый день курса посвящен определенной теме и включает теоретические материалы, практические задания и возможность взаимодействия с экспертами Google.

Участники изучат развитие LLM, начиная с трансформеров и заканчивая техниками тонкой настройки и ускорения инференса. Познакомятся с методами инженерии промптов для оптимизации взаимодействия с LLM.

В рамках курса будут рассмотрены концепции эмбедингов и векторных баз данных, алгоритмы векторного поиска и научатся создавать ИИ-агентов, понимая их основные компоненты и итеративный процесс разработки.

Курс включает создание и применение специализированных LLM: SecLM и Med-PaLM, с комментариями разработчиков. Участники узнают, как адаптировать практики MLOps для генеративного ИИ и использовать инструменты Vertex AI для базовых моделей и приложений генеративного ИИ.

В рамках практических занятий на платформе Kaggle участники смогут применить полученные знания, создавая системы вопросов и ответов на основе извлечения информации, нейронные сети классификации и агентные системы заказа.

Курс разработан экспертами Google: Анантой Навалгарией, Марком Макдональдом, Пейдж Бейли и другими.

⚠️ Для доступа к коду курса необходимы аккаунты на Kaggle (c верификацией номера телефона), Google Ai Studio (для создания API KEY).


🟡Страница курса
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #GenAI #Course

Читать полностью…

Big Data AI

🔥 OuteTTS-0.2-500M — модель, которая предназначена для задач синтеза речи (Text-to-Speech)!

🌟 Она имеет 500 миллионов параметров и обучена для создания естественного звучания голоса, поддерживая высокое качество аудиовыхода. Основное применение — преобразование текстового ввода в реалистичную речь, что может быть полезно для создания виртуальных ассистентов, озвучивания текста и других сценариев, связанных с генерацией речи.

🔗 Ссылка: *клик*

@bigdatai

Читать полностью…

Big Data AI

📖 Эта статья рассматривает вопрос создания контрфактуальных данных с использованием языковых моделей!

💡 Контрфактуальные данные позволяют понять, как бы выглядело предложение, если бы оно было создано при определенных изменениях в модели. В статье авторы подчеркивают, что контрфактуальное рассуждение отличается от стандартных интервенционных подходов, таких как манипуляция представлениями моделей, поскольку основано на других концепциях причинности.

🌟 Авторы предлагают новый подход для генерации контрфактов, который основывается на формулировке языковых моделей как обобщенных структурных уравнений и использовании трюка Gumbel-max. Этот метод позволяет моделировать совместное распределение исходных строк и их контрфактуальных версий, что обеспечивает более точное понимание воздействия интервенций. Эксперименты показывают, что их алгоритм генерирует значимые контрфакты и демонстрирует, что традиционные методы интервенции имеют нежелательные побочные эффекты.

🔗 Ссылка: *клик*

@bigdatai

Читать полностью…

Big Data AI

⚡️ PaliGemma 2: Новое семейство VLMs от Google.

PaliGemma 2 - обновление open-sorce VLM PaliGemma, основанное на семействе LLM Gemma 2. Семейство сочетает в себе кодировщик изображений SigLIP-So400m с спектром моделей Gemma 2, от 2B до 27B параметров. Модели PaliGemma 2 обучались в 3 этапа на трех разрешениях (224px², 448px² и 896px²).

PaliGemma 2 демонстрирует впечатляющие результаты в распознавании музыкальных нот, молекулярных структур и медицинских изображений. Модели справляются с распознаванием табличной структуры и созданием отчетов по рентгенограммам.

В задачах генерации длинных, детализированных аннотаций к изображениям PaliGemma 2 превосходит многие популярные VLM, несмотря на то, что она обучалась на значительно меньших наборах данных.

Для развертывания на устройствах без GPU могут использоваться квартованные версии PaliGemma 2. Тесты показали, что переход от 32-битной разрядности (f32) к 16-битной (bf16) или квантованным весам не приводит к заметному снижению качества.

В релиз вошли предварительно обученные модели 3B, 10B и 28B с разрешениями 224px, 448px, 896px, модели, настроенные на наборе данных DOCCI для создания аннотаций к изображениям и их версии для JAX/FLAX.

Процесс файнтюна PaliGemma 2 такой же, как и у предыдущей версии. Разработчики предоставляют скрипт и ipynb-блокнот для тонкой настройки модели или создания LoRA/QLoRA.

Создание LoRA модели PaliGemma 2 на половине валидационного сплита VQAv2 заняло полчаса на 3-х A100 с 80 ГБ VRAM. Результат можно найти здесь, а это ее демо.

▶️Пример инференса модели paligemma2-10b-ft-docci-448 на Transformers:

from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests

model_id = "google/paligemma2-10b-ft-docci-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model = model.to("cuda")
processor = AutoProcessor.from_pretrained(model_id)

prompt = "<image>caption en"
image_file = "% link_to_target_file%"
raw_image = Image.open(requests.get(image_file, stream=True).raw).convert("RGB")

inputs = processor(prompt, raw_image, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=20)

print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])


📌Лицензирование: Gemma License.


🟡Статья
🟡Коллекция на HF
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #VLM #Google #PaliGemma

Читать полностью…

Big Data AI

🔥 nsfw_detector — инструмент для автоматического распознавания NSFW-контента (неподходящего или откровенного)!

💡 Он основан на модели Google ViT, обеспечивает точную классификацию файлов и поддерживает обработку изображений, видео, PDF-документов и файлов в архиве.

🔍 Основные особенности:

🌟 Поддержка работы на CPU, без необходимости использования GPU, что делает его универсальным для большинства серверов.

🌟 Локальная обработка данных для защиты конфиденциальности.

🌟 Легкая интеграция через API и возможность развертывания через Docker.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔍 fast-graphrag — инструмент, предназначенный для оптимизации работы Retrieval-Augmented Generation (RAG) с использованием графовых структур знаний!

🌟 Он расширяет возможности GraphRAG, добавляя поддержку алгоритма PageRank для улучшения поиска и обработки данных. Этот подход позволяет быстрее находить ключевую информацию, улучшать точность на 20% и снижать затраты на обработку данных примерно в 6 раз по сравнению с традиционными методами RAG.

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: /channel/gamedev

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy

Читать полностью…

Big Data AI

🔥 Garak — инструмент от NVIDIA для автоматизированного тестирования безопасности и надежности крупных языковых моделей!

🌟 Он позволяет выявлять уязвимости, проблемы с устойчивостью и некорректные ответы моделей, применяя различные методики тестирования. Это помогает разработчикам и исследователям совершенствовать модели и повышать их качество.

🌟 Инструмент также поддерживает расширение функциональности: пользователи могут добавлять свои собственные тесты, создавая кастомные модули.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔥 gitdigest — это инструмент для анализа истории репозиториев Git и создания сводной статистики по изменениям в коде!

💡 Он собирает данные о коммитах, авторах, частоте изменений, а также об общем объеме внесенных правок, предоставляя метрики для анализа активности разработчиков и структуры проекта.

🔍 Основные возможности:

🌟 Анализ истории коммитов: Сбор данных о количестве коммитов, их авторах и временных интервалах.

🌟 Извлечение информации о типах изменений: добавления, удаления строк и файлов.

🌟 Визуализация статистики: Генерация отчетов о вкладе разработчиков.

🌟 Возможность анализа продуктивности и выявления "узких мест" в разработке.

🌟 Интеграция с CI/CD: Подходит для автоматического анализа репозитория в процессе разработки.

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔥 Gemini Cookbook от Google — руководство для работы с API Gemini!

🌟 В нем собраны быстрые стартовые инструкции, учебные примеры и руководство по использованию различных функций API, таких как обработка текста, изображений, аудио и видео, а также интеграция с кодом.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: /channel/gamedev
Haskell: t.me/haskell_tg

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy

Читать полностью…

Big Data AI

⚡️ xAI выпустили grok-2-1212 и grok-2-vision-1212

Grok можно использовать совершенно бесплатно на X:

Потестить: https://huggingface.co/spaces/akhaliq/anychat

@bigdatai

Читать полностью…

Big Data AI

🔥 Курс по Ollama — создавайте ИИ-приложения локально!

🌟 C такими инструментами, как Ollama, вы можете привнести передовые возможности ИИ прямо в свою локальную среду. Изучение того, как использовать локальные большие языковые модели (LLM), может открыть целый мир возможностей. Локальные LLM обеспечивают больший контроль, настройку и конфиденциальность данных по сравнению с облачными системами ИИ.

🕞 Продолжительность: 2:57:23

🔗 Ссылка: *клик*

#курс #ollama #machinelearning


@bigdatai

Читать полностью…

Big Data AI

🔍 RAGLite — это инструмент для работы с Retrieval-Augmented Generation (RAG), подходом, который улучшает качество генерации текстов с помощью поиска релевантной информации!

🌟 RAGLite упрощает интеграцию поиска и генерации, предоставляя средства для работы с векторным поиском, поиском по ключевым словам и гибридными методами. Его функционал включает внедрение документов, извлечение фрагментов, ранжирование и создание ответов на основе найденных данных.

🌟 Инструмент поддерживает использование различных моделей машинного обучения для поиска и генерации, интеграцию с базами данных и настройку пользовательского интерфейса в стиле ChatGPT. RAGLite может быть развернут локально или на платформах, таких как Slack или Microsoft Teams, что делает его полезным для приложений, требующих адаптивной генерации текста, как, например, интеллектуальные чат-боты или системы поиска знаний.

🔐 Лицензия: MPL-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🔥 LaVague — это фреймворк для разработки AI-агентов, способных автоматизировать веб-процессы!

🌟 Агенты анализируют данную веб-страницу, определяют шаги для выполнения задач и реализуют их с помощью встроенных инструментов, таких как Selenium или Playwright. Подходит для разных задач автоматизации, от навигации по сайтам до тестирования!

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

📹 OpenAI представила Sora: новую модель для создания видеороликов по текстовому описанию.

Компания OpenAI на онлайн-стриме анонсировала запуск Sora – инструмента для создания видео по текстовому запросу. Sora доступна подписчикам ChatGPT Plus и Pro, с ограничениями по региону (недоступна на территории ЕС и Великобритании), количеству генераций и качеству видео. Plus-пользователи смогут создавать до 5 видео в месяц длиной до 5 секунд в разрешении до 720p.

Pro-подписка позволяет сгенерировать до 500 коротких видео длиной до 20 секунд в разрешении до 1080p. Sora предлагает различные инструменты для редактирования и управления процессом создания видео: Storyboard для покадровой режиссуры и функции для добавления начала, концовки и объединения нескольких видео.
openai.com

Читать полностью…

Big Data AI

📎 ML в медицине: дайджест за 1 - 7 декабря 2024 г.


▶️Модели, бенчмарки и датасеты

🔘SOAR: бенчмарк для оценки LLM в задачах аннотации типов клеток.
Тест, который проверяет, насколько хорошо модели могут понимать и анализировать сложные данные о клетках.

🔘Повышение точности диагностики рентгенограмм грудной клетки с помощью анализа направления взгляда врачей.
Система 2-х нейросетей, которая помогает диагностировать заболевания по рентгенограммам грудной клетки и предсказывает, на какие области изображения врачи обращают внимание.

🔘EchoONE: унифицированная модель для сегментации множества плоскостей эхокардиографии.
Модель, которая помогает врачам более точно анализировать снимки сердца, сделанные с помощью ультразвука, даже если снимки сделаны под разными углами.


▶️Фреймворки и методологии

🔘RARE: RAG-ризонинг.
Метод для улучшения способности рассуждать и давать точные ответы, используя комбинацию генерации и поиска информации для обогащения своих знаний.

🔘STORM: cтратегия организации модальностей для классификации редких событий.
Алгоритм, который помогает выбрать лучшие источники информации для решения сложных медицинских задач.

🔘TransFair: прогноз прогрессирования глазных заболеваний.
Модель классификации, которая помогает сделать прогнозы о глазных заболеваниях более справедливыми и точными.

🔘PePR: оценка эффективности моделей с учетом потребления ресурсов.
Показатель, который помогает оценить, насколько эффективно модель использует ресурсы.

🔘Оценка качества рентгенологических заключений с помощью сопоставления клинических данных с изображением.
Метод оценки качества автоматически сгенерированных рентгенологических отчетов, который учитывает точность описания патологических изменений, их локализации и степени выраженности.


▶️Медицинские LLM-приложения

🔘MedChain: LLM-агент и бенчмарк для принятия клинических решений.
Набор данных и система для имитации реальной клинической практики, где каждый случай включает подробную информацию о пациенте и требует активного сбора информации и принятия решений на основе предыдущих шагов.

🔘QG-Summ: автореферирование медицинских записей с самоконтролем, управляемое запросами.
Метод, который помогает создавать краткие и точные отчеты о состоянии пациентов в электронных медкартах, используя запросы, связанные с пациентом, для руководства процессом.

🔘CLINICSUM: генерация медицинских заключений из диалогов врача и пациента.
Фреймворк, который может автоматически создавать медицинские заключения на основе разговоров между врачом и пациентом, используя специальную архитектуру.


▶️Исследования и обзоры

*️⃣Проблемы производительности LLM для здравоохранения с учетом демографической справедливости.
Исследование проблемы демографической предвзятости популярных современных LLM в различных медицинских задачах.

*️⃣Применение эмбединг-моделей для классификации медицинских текстов.
Статья о том, как использовать эмбединги для классификации медицинских текстов без необходимости обучения на медицинских данных.

*️⃣BlockMedCare: блокчейн, ИИ и IoT для здравоохранения будущего.
Концепция системы для безопасного и эффективного управления электронными медицинскими картами, позволяя пациентам, врачам и администраторам взаимодействовать с системой на различных устройствах.



🔜 Читать полный дайджест


@ai_machinelearning_big_data

Читать полностью…

Big Data AI

🖥 MagicQuill — исследовательский проект, разработанный для интерактивного редактирования изображений с использованием моделей машинного обучения!

🌟 Этот инструмент позволяет выполнять такие задачи, как модификация цвета и структуры изображения, использование масок для выборочного редактирования и обработка изображений на основе подсказок (prompts). В основе проекта лежат технологии PyTorch и интеграция с Gradio для удобного интерфейса взаимодействия.

🔐 Лицензия: CC BY-NC 4.0

🖥 Github

@bigdatai

Читать полностью…

Big Data AI

🪐 Multimodal Universe: Свежий датасет 100 ТБ научных астрономических данных

Мультимодальный набор данных Universe - это крупномасштабная коллекция мультимодальных астрономических данных, включая изображения, спектры и кривые блеска, предназначеный для проведения исследований в области астрономии и астрофизики.


python
from datasets import load_dataset

dset = load_dataset('MultimodalUniverse/plasticc',
split='train', streaming=True)

example = next(iter(dset))


Github: https://github.com/MultimodalUniverse/MultimodalUniverse
Colab: https://colab.research.google.com/github/MultimodalUniverse/MultimodalUniverse/blob/main/notebooks/getting_started.ipynb
HF: huggingface.co/MultimodalUniverse

@bigdatai

Читать полностью…

Big Data AI

🔥 Все инструменты Flux.1 теперь находятся на HuggingFace Spaces!

🖌 Fill
🖼 Redux
Canny
🩻 Depth

@bigdatai

Читать полностью…

Big Data AI

📖 Эта статья описывает подход для улучшения процесса отладки кода, сгенерированного LLM!

🌟 Исследователи представляют метод MGDebugger, который использует иерархическую стратегию отладки. Этот метод включает разбиение кода на древовидную структуру подфункций и их независимую проверку. Это позволяет находить ошибки на различных уровнях детализации: от синтаксических до алгоритмических.

🌟 MGDebugger использует симуляцию выполнения кода внутри LLM для выявления и исправления ошибок. Он генерирует тесты для подфункций на основе публичных тестов основной функции, а затем анализирует их выполнение. В процессе исправления исправленный код обновляет всю структуру. Такой подход упрощает отладку сложных функций и делает процесс более систематичным и эффективным.

🔗 Читать: *клик*

@bigdatai

Читать полностью…

Big Data AI

⚡️ ERPoT: Эффективное и надежное отслеживание движения мобильных роботов на основе легких и компактных полигональных карт

https://github.com/ghm0819/ERPoT

@bigdatai

Читать полностью…

Big Data AI

Приглашаем тебя на крутое IT-мероприятие, посвящённое AI и передовым технологиям разработки рекомендательных систем.

Регистрируйся, и в день мероприятия мы пришлём тебе ссылку на трансляцию. Или приходи очно, если ты живёшь в одном из городов.

Где и когда?

👉 Нижний Новгород, 5 декабря
👉 Санкт-Петербург, 6 декабря

Тебя ждут крутейшие доклады, живая дискуссия и новые знания в сфере рекомендательных систем.

Количество мест ограничено — успей занять своё и прикоснуться к миру рекомендательных систем! 😉

Читать полностью…
Subscribe to a channel