Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚
🚀 LTX-Video 13B — один из самых мощных open-source видеогенераторов.
Разработчики внедрили в модель мультимасштабный рендеринг.
✅ Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.
📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:
один поток отвечает за фон (низкая детализация, большой масштаб),
другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).
Потом всё объединяется в один кадр, как слои в Photoshop.
🎯 Зачем это нужно?
Фон остаётся стабильным, не "дергается"
Движущиеся объекты остаются чёткими и отдельными от фона
Картинка в целом не разваливается (нет смешивания движений, артефактов)
Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.
👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.
Что нового?
– Модель 13 миллиардов параметров
– Multiscale rendering → больше деталей, чётче текстуры
– Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций
Запускается даже на RTX 4090.
#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration
▪Попробовать можно тут→ https://app.ltx.studio/ltx-video
▪Code → https://github.com/Lightricks/LTX-Video
▪Weights → https://huggingface.co/Lightricks/LTX-Video
✔ PySpur
PySpur — это полезны и легкий инструмент для создания и управления рабочими процессами, с минимальным количеством зависимостей.
Он позволяет легко добавлять новые узлы через файл на Python и использует формат JSON для настройки графов.
Инструмент поддерживает асинхронное выполнение задач, работу с несколькими модальностями данных и оптимизацию конвейеров. Кроме того, он предоставляет возможность генерации узлов с использованием технологий искусственного интеллекта.
▪Github
1️⃣2️⃣3️⃣4️⃣5️⃣6️⃣7️⃣8️⃣9️⃣🔟
Как меняется ИТ-индустрия с внедрением AI? Узнай 6 июня на ИТ-конференции МТС True Tech Day
True Tech Day 2025 — третья масштабная технологическая конференция МТС для профессионалов ИТ‑индустрии.
В программе:
— Больше 40 докладов от известных ученых и ИТ-компаний.
— Выступления зарубежных спикеров с индексом Хирша более 50.
— Концентрация практических кейсов: как создаются большие проекты с применением AI.
— Доклады по архитектуре, бэкенд-разработке и построению ИТ-платформ.
— AI-интерактивы и технологические квесты.
— Пространство для нетворкинга,
…а еще after-party со звездным лайн-апом.
Когда: 6 июня
Где: Москва, МТС Live Холл и онлайн
Участие бесплатно. Регистрация по ссылке.
📈 За последние 28 дней сайт ChatGPT посетили больше людей, чем X (Твиттер).
- ChatGPT посетили 4,786 млрд раз
- X 4,028 млрд посещений
❓Как найти аномалии в данных с помощью машинного обучения?
В мире данных выявление аномалий — ключевая задача, которая помогает находить неисправности, мошенничество и отклонения. Без правильных методов вы рискуете упустить важные факты, которые могут повлиять на результаты.
На открытом вебинаре 13 мая в 18:00 мск мы подробно разберем, как эффективно искать аномалии в данных с использованием популярных методов, от простых статистических до продвинутых, таких как Isolation Forest и OneClassSVM.
📣 Спикер Мария Тихонова – PhD Computer Science, Senior Data Scientist и преподаватель в одном из крупнейших университетов России.
➡️ Запишитесь на вебинар и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/RBJq/?erid=2W5zFFwo5AQ
#реклама
О рекламодателе
🖥 PyXL — первый в мире специализированный процессор для нативного запуска Python
Что это?
PyXL исполняет байт-код CPython прямо на чипе — без JIT, интерпретатора и виртуальных машин. Ваши .py файлы компилируются в байт-код, затем транслируются в набор инструкций PySM, которые обрабатываются процессором.
Ключевые особенности:
⚡ Скорость: в тестах обработки GPIO PyXL в 30× быстрее MicroPython на Pyboard (480 нс vs 14 741 нс при 100 MHz vs 168 MHz).
🔧 Прототип на FPGA: реализован на Verilog и тестируется на платах Zynq-7000.
🚀 Без прослоек: доступ к GPIO — напрямую, без Си-функций и внешних вызовов.
🏗️ Архитектура: конвейерная обработка, стековая модель, динамическая типизация без ограничений на типы переменных.
🛠️ Инструменты: транслятор на Python под неизм. CPython, готов к встраиваемым системам и реальному времени.
Что дальше?
📅 Полные технические детали будут представлены 17 мая на PyCon 2025. Рассматривается открытие кода и выпуск ASIC-чипа.
Автор проекта — Рон Ливне (Ron Livne), эксперт по аппаратному ускорению и оптимизации.
#Python #PyXL #Embedded #FPGA #PyCon2025
https://runpyxl.com/gpio
🚀 DeepWiki-Open: автоматическая генерация вики-документации с ИИ
Это open-source инструмент для автоматического создания интерактивной вики-документации на основе исходного кода репозитория. Идеально подходит для разработчиков и команд, которые хотят быстро структурировать знания о проекте.
## 🔍 Что умеет DeepWiki
- Анализирует код и его архитектуру
- Генерирует документацию по компонентам и их связям
- Создает визуальные диаграммы (например, с помощью Mermaid)
- Структурирует всё в вики с удобной навигацией
✨ Особенности
✅ Мгновенная генерация вики
✅ Поддержка приватных репозиториев
✅ Интеллектуальный анализ кода с помощью OpenAI и Google Gemini
✅ Автоматические архитектурные диаграммы
✅ Удобный интерфейс
🛠️ Стек технологий
- Backend: Python (FastAPI)
- Frontend: Next.js + React
- Визуализация: Mermaid
- Контейнеризация: Docker, docker-compose
🚀 Быстрый старт
git clone https://github.com/AsyncFuncAI/deepwiki-open.git
cd deepwiki-open
echo "GOOGLE_API_KEY=ваш_google_api_key" > .env
echo "OPENAI_API_KEY=ваш_openai_api_key" >> .env
docker-compose up
✔️ Gemini планирует интеграцию с GitHub.
Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.
Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com
✔️ Релиз моделей серии Phi-4 с ризонингом.
Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.
Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com
✔️ Anthropic добавила интеграцию приложений и улучшила исследовательские возможности Claude .
Anthropic представила 2 ключевых обновления для своего Claude: интеграцию сторонних сервисов и расширенный инструмент для глубокого анализа. Новая функция "Integrations" позволяет подключать Claude к бизнес-приложениям вроде Confluence, Zapier или PayPal через серверы на базе протокола MCP. Это даст ИИ доступ к данным проектов, автоматизирует задачи и улучшает контекстную работу.
Параллельно запущен Advanced Research: теперь Claude может анализировать сотни источников (включая корпоративные данные и локальные диски) за несколько минут, формируя детальные отчеты со ссылками на источники. Обновление использует «рассуждающие» модели ИИ.
Функции доступны в бета-версии для подписчиков Claude Max, Team и Enterprise, а также скоро появятся в плане Pro. Anthropic также увеличила лимиты для кодинг-инструмента Claude Code.
anthropic.com
✔️ Google тестирует рекламу в диалогах с AI-чатами через AdSense.
Google начал внедрять рекламу в чаты пользователей с некоторыми сторонними ИИ-ассистентами через сеть AdSense. Функция, запущенная в этом году, уже тестировалась с стартапами Ask и Liner. Представитель компании подтвердил: «AdSense для Поиска доступен сайтам, которые хотят показывать релевантную рекламу в своих AI-диалогах».
Этот шаг выглядит попыткой монетизировать растущую популярность ИИ-чатов вроде ChatGPT или Claude, которые постепенно заменяют традиционный поиск. Ранее компания уже добавляла рекламу в ИИ-сниппеты поиска. Однако интеграция с внешними сервисами — новый этап.
bloomberg.com
✔️ Умные очки Ray-Ban будут собирать пользовательские данные для обучения ИИ.
Facebook-research внесли ключевые изменения в правила конфиденциальности своих умных очков Ray-Ban. С 29 апреля владельцы устройств больше не могут отключать сохранение голосовых записей в облаке — удалить их можно только вручную через настройки. По словам компании, аудио и транскрипты хранятся до года для улучшения продуктов, а случайные активации удаляются через 90 дней.
Фото и видео с камеры очков по-прежнему остаются в галерее смартфона и не используются для обучения ИИ, если не загружены в облачные сервисы компании или сторонние приложения. Однако голосовой помощник теперь всегда активен, пока пользователь не отключит его вручную. Это решение направлено на сбор данных для тренировки алгоритмов.
theverge.com
@ai_machinelearning_big_data
#news #ai #ml
🚀 17 000 промптов в одной базе — собрано всё, что нужно для работы с ИИ!
Разработчики собрали огромное хранилище запросов для всех топовых нейросетей: от Midjourney и ChatGPT до Runway и DALL·E.
✅ Что внутри:
• Все промпты удобно отсортированы по категориям, задачам, стилям и инструментам — не заблудитесь.
• К каждому запросу прикладываются примеры использования.
• Сервис помогает адаптировать ваши собственные промпты под конкретные задачи.
• Можно публиковать свои промпты и делиться ими с другими.
• Есть быстрое расширение для Chrome.
• И всё это бесплатно.
https://promptport.ai/
Welcome Time для аналитиков: дружелюбная встреча с командой Поиска с Нейро в штаб-квартире Яндекса
Расскажем в чем специфика аналитики в продукте, проведем диагностику навыков и ответим на все ваши вопросы.
Где и когда: 17 мая в 12:00, штаб-квартира Яндекса «Красная Роза» (Льва Толстого, 16)
Что в программе:
-Как устроена аналитика Поиска
-В чём специфика аналитики доли и дистрибуции
-Как работает продуктовая аналитика YandexGPT
-Всё об аналитике срезов в Поиске
-Диагностика навыков и нетворкинг
Да, один из главных пойнтов встречи — диагностика навыков аналитики и математической статистики. Если пройдёте успешно — в течение двух лет сможем засчитать как техническую секцию собеседования в Яндекс.
Поиск с Нейро — первый и самый широко используемый сервис Яндекса. Наши аналитики развивают сложный и высоконагруженный сервис, который постоянно обновляется и нуждается в свежих идеях! Возможно, в ваших.
➡️ Регистрируйтесь на Welcome Time для аналитиков здесь
🖥 GPT-4 больше не будет доступен с завтрашнего дня.
Прощай, легенда.
@data_analysis_ml
📄 Sparrow — интеллектуальный парсинг документов с помощью LLM. Этот проект сочетает компьютерное зрение и языковые модели для извлечения информации из счетов, банковских выписок и других сложных документов.
Инструмент имеет модульную архитектуру, позволяющую запускать pipelines как локально, так и в облаке через Hugging Face. Интересно, что Sparrow не просто распознает текст, а понимает семантику документов — система может извлекать конкретные поля по JSON-шаблону и даже обрабатывать многостраничные PDF с сохранением структуры.
🤖 GitHub
@data_analysis_ml
Скайнет, который мы заслужили
@data_analysis_ml
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
Нерйросети t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: /channel/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: /channel/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: /channel/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: /channel/addlist/BkskQciUW_FhNjEy
🔍 AgentOps — платформа для мониторинга AI-агентов. Проект предлагает готовые интеграции с популярными фреймворками вроде LangChain и AutoGen — достаточно добавить всего пару строк кода для подключения мониторинга.
Интересный момент: система умеет отслеживать не только ошибки, но и затраты на LLM-запросы, что особенно актуально для продакшн-сред.
🤖 GitHub
🧩 Задача для продвинутых дата-сайентистов: "Парадокс усечённых данных"
📖 Описание задачи
У вас есть DataFrame df
с данными о зарплатах сотрудников в компании:
import pandas as pd
data = {
'employee_id': range(1, 11),
'department': ['IT', 'IT', 'IT', 'HR', 'HR', 'Finance', 'Finance', 'Finance', 'Finance', 'Finance'],
'salary': [120000, 125000, None, 70000, None, 90000, None, 95000, None, 100000]
}
df = pd.DataFrame(data)
print(df)
employee_id department salary
0 1 IT 120000.0
1 2 IT 125000.0
2 3 IT NaN
3 4 HR 70000.0
4 5 HR NaN
5 6 Finance 90000.0
6 7 Finance NaN
7 8 Finance 95000.0
8 9 Finance NaN
9 10 Finance 100000.0
df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))
top_department = df.groupby('department')['salary_filled'].mean().idxmax()
print(top_department)
🔥CocoIndex — это современный ETL-фреймворк с открытым исходным кодом, предназначенный для подготовки данных к использованию в системах искусственного интеллекта. Он поддерживает пользовательскую логику трансформации и инкрементальные обновления, что делает его особенно полезным для задач индексации данных.
🔧 Основные возможности
- Инкрементальная обработка данных: CocoIndex отслеживает изменения в исходных данных и логике трансформации, обновляя только изменённые части индекса, что снижает вычислительные затраты.
- Поддержка пользовательской логики: Фреймворк позволяет интегрировать собственные функции обработки данных, обеспечивая гибкость при построении пайплайнов.
- Модульная архитектура: Встроенные компоненты для чтения данных (локальные файлы, Google Drive), обработки (разбиение на чанки, генерация эмбеддингов) и сохранения результатов (PostgreSQL с pgvector, Qdrant).
- Поддержка различных форматов данных: Поддержка текстовых документов, кода, PDF и структурированных данных, что делает CocoIndex универсальным инструментом.
🚀 Примеры использования
- Семантический поиск: Индексация текстовых документов и кода с эмбеддингами для семантического поиска.
- Извлечение знаний: Построение графов знаний из структурированных данных, извлечённых из документов.
- Интеграция с LLM: Извлечение структурированной информации из неструктурированных данных с помощью больших языковых моделей.
⚙️ Быстрый старт
1. Установите библиотеку CocoIndex:
pip install -U cocoindex
🧩 The Ultimate LLM Benchmark Collection
Подборка живых бенчмарков, которые стоит открывать при каждом релизе новой модели — и тех, на которые можно больше не тратить время.
🌐 Общие (multi‑skill) лидерборды
SimpleBench — https://simple-bench.com/index.html
SOLO‑Bench — https://github.com/jd-3d/SOLOBench
AidanBench — https://aidanbench.com
SEAL by Scale (MultiChallenge) — https://scale.com/leaderboard
LMArena (Style Control) — https://beta.lmarena.ai/leaderboard
LiveBench — https://livebench.ai
ARC‑AGI — https://arcprize.org/leaderboard
Thematic Generalization (Lech Mazur) — https://github.com/lechmazur/generalization
дополнительные бенчмарки Lech Mazur:
Elimination Game — https://github.com/lechmazur/elimination_game
Confabulations — https://github.com/lechmazur/confabulations
EQBench (Longform Writing) — https://eqbench.com
Fiction‑Live Bench — https://fiction.live/stories/Fiction-liveBench-Mar-25-2025/oQdzQvKHw8JyXbN87
MC‑Bench (сортировать по win‑rate) — https://mcbench.ai/leaderboard
TrackingAI – IQ Bench — https://trackingai.org/home
Dubesor LLM Board — https://dubesor.de/benchtable.html
Balrog‑AI — https://balrogai.com
Misguided Attention — https://github.com/cpldcpu/MisguidedAttention
Snake‑Bench — https://snakebench.com
SmolAgents LLM (из‑за GAIA & SimpleQA) — https://huggingface.co/spaces/smolagents/smolagents-leaderboard
Context‑Arena (MRCR, Graphwalks) — https://contextarena.ai
OpenCompass — https://rank.opencompass.org.cn/home
HHEM (Hallucination) — https://huggingface.co/spaces/vectara/leaderboard
🛠️ Coding / Math / Agentic
Aider‑Polyglot‑Coding — https://aider.chat/docs/leaderboards/
BigCodeBench — https://bigcode-bench.github.io
WebDev‑Arena — https://web.lmarena.ai/leaderboard
WeirdML — https://htihle.github.io/weirdml.html
Symflower Coding Eval v1.0 — https://symflower.com/en/company/blog/2025/dev-quality-eval-v1.0-anthropic-s-claude-3.7-sonnet-is-the-king-with-help-and-deepseek-r1-disappoints/
PHYBench — https://phybench-official.github.io/phybench-demo/
MathArena — https://matharena.ai
Galileo Agent Leaderboard — https://huggingface.co/spaces/galileo-ai/agent-leaderboard
XLANG Agent Arena — https://arena.xlang.ai/leaderboard
🚀 Для отслеживания AI take‑off
METR Long‑Task Benchmarks (вкл. RE Bench) — https://metr.org
PaperBench — https://openai.com/index/paperbench/
SWE‑Lancer — https://openai.com/index/swe-lancer/
MLE‑Bench — https://github.com/openai/mle-bench
SWE‑Bench — https://swebench.com
🏆 Обязательный «классический» набор
GPQA‑Diamond — https://github.com/idavidrein/gpqa
SimpleQA — https://openai.com/index/introducing-simpleqa/
Tau‑Bench — https://github.com/sierra-research/tau-bench
SciCode — https://github.com/scicode-bench/SciCode
MMMU — https://mmmu-benchmark.github.io/#leaderboard
Humanities Last Exam (HLE) — https://github.com/centerforaisafety/hle
🔍 Классические бенчмарков
Simple‑Evals — https://github.com/openai/simple-evals
Vellum AI Leaderboard — https://vellum.ai/llm-leaderboard
Artificial Analysis — https://artificialanalysis.ai
⚠️ «Перегретые» метрики, на которые можно не смотреть
MMLU, HumanEval, BBH, DROP, MGSM
Большинство чисто‑математических датасетов: GSM8K, MATH, AIME, ...
Модели близки к верхним значениям на них и в них нет особого смысла.
🌟 Atropos: тренажерный зал для RL языковых моделей.
Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.
Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.
Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.
Практическая польза протестирована в экспериментах:
🟢В задачах параллельного вызова функций точность тестовой модели DeepHermes Tool Calling Specialist выросла в 4,6 раза — с 10% до 46%.
🟢В прогнозировании финансовых показателей на модели DeepHermes Financial Fundamentals Prediction Specialist, RL через Atropos удвоил точность (с 20% до 50%).
Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.
Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.
Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.
В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.
Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.
📌Лицензирование: MIT License.
🟡Статья
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Framework #NousResearch #Atropos
🔥 Огромная статья, которая посвящена оптимизации вывода (инференса) больших языковых моделей (LLM) с использованием одного графического процессора!
🌟 Автор делится опытом создания собственного движка для LLM на основе C++ и CUDA, фокусируясь на максимизации пропускной способности. Рассматриваются ключевые этапы, такие как загрузка модели, выполнение прямого прохода, использование кеша KV и многозадачность на CPU. Также подчеркивается важность пропускной способности памяти и квантования модели (например, FP16) для эффективного вывода. В статье приводятся бенчмарки и сравнение с другими фреймворками, такими как llama.cpp и Hugging Face, чтобы установить реалистичные цели по производительности.
🔗 Ссылка: *клик*
#machinelearning
@data_analysis_ml
🤖 Deep Live Cam: тулза для создания дипфейков в реальном времени без искажений и с идеальной подгонкой под свет и движение головы.
Можно даже спокойно трясти головой и лицо останется без искажений.
🔜 Код
🖥 Google встраивает рекламу в ответы чат-ботов
Google теперь размещает рекламу непосредственно в разговорах чат-ботов на базе ИИ, расширяя свою сеть AdSense для поиска. Этот шаг позволяет бесшовно интегрировать рекламу в диалоги, управляемые ИИ.
Мы все знали, что этот день настанет. Это был всего лишь вопрос времени.
🚨 Microsoft представила Phi-4 Reasoning — ризониг модель на 14B параметров для сложных задач!
📐 Phi-4 Reasoning — это версия Phi-4, дообученная для математики, науки и программирования. Несмотря на относительно компактный размер (14B параметров), она конкурирует с более крупными моделями, вроде DeepSeek-R1 и OpenAI o3-mini, на бенчмарках вроде AIME 2025 и OmniMath.
🔍 Ключевые моменты:
• 14B параметров
• версия Phi-4-Reasoning-Plus дообучена с Reinforcement Learning
• превосходит DeepSeek-R1-Distill-Llama-70B
• почти догоняет оригинальную DeepSeek-R1 (70B) по качеству
https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa
@data_analysis_ml
Microsoft: до 30 % кода уже пишет AI
На конференции LlamaCon CEO Microsoft Сатья Наделла объявил, что от 20 % до 30 % кода в репозиториях компании сегодня «написаны программным обеспечением», то есть с использованием искусственного интеллекта.
## Ключевые моменты
- Зависимость от языка. Лучшие результаты при генерации — на Python, более слабые — на C++.
- Интеграция на всех этапах. AI применяется не только для генерации чернового кода, но и для его ревью.
- Сравнение с конкурентами. Google уже сообщает о более 30 % AI-сгенерированного кода, Meta прогнозирует до 50 % при разработке своих языковых моделей.
- Долгосрочная перспектива. По прогнозам CTO Microsoft, к 2030 г. доля AI-генерируемого кода может вырасти до 95 %.
- Ограничения метрик. Пока не до конца ясно, что именно учитывается в «AI-коде» (автодополнение, шаблоны, бизнес-логика), поэтому цифры стоит воспринимать с осторожностью.
## Почему это важно
1. Ускорение разработки. Рутинные задачи автоматизируются, разработчики получают больше времени на архитектуру.
2. Новый уровень качества. Автоматическое ревью помогает быстрее находить ошибки, но требует строгой проверки.
3. Риски безопасности. Сгенерированный код нуждается в дополнительном анализе на уязвимости.
4. Эволюция ролей. Разработчики всё больше становятся архитекторами и аудиторами, а не «создателями» кода.
У DeepSeek на подходе новая версия (671B math/prover model), но это не R2
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
@data_analysis_ml
🔥 Релиз Qwen 3 от Alibaba
В релиз вошли 2 MoE-модели и 6 Dense models (плотные модели), размером от 0.6B до 235B параметров.
🏆 Флагманская модель Qwen3-235B-A22B демонстрирует конкурентные результаты в задачах Кодина, математики и общих способностей, уверенно соперничая с передовыми моделями, такими как DeepSeek-R1, o1, o3-mini, Grok-3 и Gemini-2.5-Pro.
⚡ Небольшая MoE-модель Qwen3-30B-A3B превосходит QwQ-32B, испрльзуя в 10 раз больше параметров.
🔥 Компактная модель Qwen3-4B сопоставима по производительности с Qwen2.5-72B-Instruct.
🔜Blog: https://qwenlm.github.io/blog/qwen3/
🔜GitHub: https://github.com/QwenLM/Qwen3
🔜Hugging Face: https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
🔜 ModelScope: https://modelscope.cn/collections/Qwen3-9743180bdc6b48
@ai_machinelearning_big_data
#Qwen
🦉Модели Qwen 3 были опубликованы на ModelScope и затем были быстро удалены.
Теперь мы знаем параметры (0.6B / 1.7B / 4B / 8B / 30B-A3B / 238B ) и архитектуру.
> Tripled language coverage, новые архитектурные фишки и контекст до 32k — всё в одной серии моделей.
- 🔧 Новые техники: global-batch load balancing (MoE), qk layernorm, тонкая настройка гиперпараметров через scaling laws
- 🚀 Dens + Mixture-of-Experts линейка: разные размеры и режимы для любых задач
- 📈 Улучшена стабильность и качество выводов по сравнению с Qwen 2.5
🤖 Модель Qwen3-8B в цифрах
- Тип: causal language model
- Параметры всего: 8,2 B (6,95 B без эмбеддингов)
- Слои: 36
- Attention heads (GQA): 32 для Q и 8 для KV
- Контекстное окно: 32 768 токенов
- разработчикам — компактная, но мощная 8B-модель с длинным контекстом
- продвинутая MoE-архитектура
- это мультиязычная plug-and-play LLM и
https://modelscope.cn/collections/Qwen3-9743180bdc6b48
@data_analysis_ml
🧠 MaxKB — open-source ИИ-ассистент для бизнеса с RAG-движком. Это не просто чат-бот, а целая платформа для создания умных ассистентов на базе языковых моделей. Система умеет работать с документами, поддерживает сложные workflows и интеграцию через API.
Для своей работы инструмент использует комбинацию проверенных технологий: Django для бэкенда, LangChain для работы с LLM и pgvector для хранения эмбеддингов. Проект универсален, уже сейчас можно подключить как локальные модели, так и облачные.
🤖 GitHub
@data_analysis_ml
✔️ Google анонсировали Genie 2 — крупномасштабную «foundation»-модель мира, способную на лету порождать интерактивные 3D-окружения. Ключевые моменты:
📌 Что такое Genie 2
Это автрорегрессивная латентно-диффузионная модель, обученная на огромном видеодатасете. Получив всего одно изображение-подсказку (например, кадр, сгенерированный Imagen 3), Genie 2 разворачивает целый виртуальный мир, в котором можно свободно перемещаться клавиатурой и мышью — как человеку, так и ИИ-агенту. Длительность консистентного эпизода достигает минуты.
Зачем она нужна
Главный барьер в исследованиях «телесных» (embodied) агентов — ограниченный спектр тренировочных сред. Genie 2 снимает это ограничение: модель способна бесконечно генерировать новые ландшафты, объекты, физику и взаимодействия, создавая «безграничный учебник» для RL-агентов.
В работе демонстрируется связка с SIMA — многоцелевым агентом DeepMind: тот получает языковые инструкции («открой синюю дверь») и действует внутри миров, созданных Genie 2. Такое сочетание позволяет быстро генерировать unseen-задачи для оценки или дообучения агентов.
Архитектура вкратце
✔️ Видео-кадр → автоэнкодер → латент.
Большой трансформер предсказывает следующий латент, учитывая прошлые кадры и действие.
Диффузионный декодер восстанавливает видимый кадр; classifier-free guidance повышает управление действием.
После дистилляции возможен real-time рендер с умеренным падением качества.
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
@data_analysis_ml
Мечтаете не просто разбираться в управлении данными, а использовать уникальные инструменты для работы с Big Data? Научитесь этому на бесплатном студкемпе Яндекс Образования и ИТМО по дата-инженерии!
🧠 Программа — интенсивная, актуальная, от лидеров индустрии. С 30 июня по 12 июля вы погрузитесь в мир распределённых хранилищ, микросервисной архитектуры, DataOps/MLOps и пайплайнов для сбора, анализа и визуализации данных. А ещё познакомитесь с технологиями, которые используют в крупных компаниях. В общем, получите реальные навыки, которые ценят на рынке!
🏙 Кампус — в самом центре Санкт-Петербурга. Несмотря на то, что студкемп проходит на базе ИТМО, заявки ждут от студентов из любых вузов и регионов России. Проезд и проживание будут оплачены Яндекс Образованием, так что вам останется сосредоточиться на главном — знаниях, опыте и новых возможностях.
🕐 Регистрация — открыта до 4 мая, но подать заявку можно уже сейчас! Если давно хотели пообщаться с топовыми айтишниками и почувствовать, каково это — учиться в одном из ведущих технических вузов, не откладывайте и заполняйте анкету по ссылке.