data_analysis_ml | Unsorted

Telegram-канал data_analysis_ml - Анализ данных (Data analysis)

10807

Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚

Subscribe to a channel

Анализ данных (Data analysis)

🛢 В мире, где данные — новая нефть, растёт спрос на дата-инженеров. Ведь именно они знают, как такую нефть добывать, обрабатывать и хранить. И пока компании осознают потребность в этих специалистах, конкуренция на рынке низкая, а зарплаты — высокие.

Освоить ключевые компетенции дата-инженера поможет онлайн-магистратура Нетологии и НИУ ВШЭ «Инженерия данных». За 2 года вы на практике изучите Python, Java, Scala, Kotlin и SQL, научитесь проектировать пайплайны и обрабатывать данные, работать с системами хранения данных и базами данных в облаке. Программа даёт широкий простор для переквалификации, поэтому после учёбы сможете перейти в MLOps, DevOps или менеджмент.

Онлайн-формат позволяет учиться без отрыва от привычной жизни и совмещать занятия с работой. При этом у вас будет отсрочка от армии, льготы на проезд и все остальные бонусы очного обучения.

Станьте магистром программной инженерии с дипломом одного из лучших вузов страны и получите веское преимущество при приёме на работу: https://netolo.gy/dlaL

Реклама. ООО "Нетология". Erid 2VSb5wpkBUL

Читать полностью…

Анализ данных (Data analysis)

Как писать поддерживаемый, воспроизводимый и повторно используемый код в ML/DS?

🔹Расскажем на открытом уроке «Рефакторинг ML-проекта с точки зрения продуктового кода» что такое хороший код и как его писать, и почему Jupyter мешает нам это делать

Практика: Декомпозиция ML/DS-кода, работа с окружением, управление зависимостями

Урок приурочен курсу «MLOps» от Otus.

👉 Регистрация и подробности:
https://otus.pw/ml1V/?erid=LjN8KHADT

Читать полностью…

Анализ данных (Data analysis)

Соберём ансамбль — вместе веселее!

Приглашаем на открытый урок, где вы узнаете как усилить свои модели объединяя их сильные стороны. 

🔹Расскажем в чем заключается "сила толпы" и когда оправдано ее использование

🔹Покажем методы объединения моделей в ансамбли, которые помогут добиться лучших результатов без существенного усложнения моделей

✅ Практика: Вместе построим ансамбль моделей для задачи классификации.

Урок приурочен курсу «Machine Learning» от Otus. По окончанию обучение получите диплом государственного образца.

👉 Регистрация и подробности:
https://otus.pw/UkzJ/?erid=LjN8K65FK

Читать полностью…

Анализ данных (Data analysis)

🏆 Ozon Tech запускает E-CUP — масштабное соревнование для ML-разработчиков в сфере e-com! Реши реальную бизнес-задачу и поборись за призовой фонд в 1 200 000 рублей!

Смотри подробности и регистрируйся до 18 августа

Приглашаем специалистов по Data Science, ML-инженеров, разработчиков. Твои суперсилы:
🔸 гуру машинного обучения и работы с ML-фреймворками;
🔸 мастер ETL-процессов, SQL, Spark и подобных систем;
🔸 ас в компьютерном зрении.

Решай задачи в стиле команды Ozon Tech — минимум ручных действий, максимум автоматизации. Everything as code! Эксперты хакатона расскажут, как максимально эффективно применять этот подход в своей работе.

🚀 На выбор — одна из задач, основанных на реальных бизнес-кейсах Ozon Tech:
1️⃣ Создать ML-модель для улучшения пользовательского опыта клиентов, которая с помощью названий, атрибутов и картинок определит, одинаковые ли товары на изображении.
2️⃣ Разработать алгоритм для модерации карточек товаров с признаками нарушений правил площадки. Модель должна распознавать сигарету на любых изображениях: от фотографий до аниме-фреймов.

Ключевые этапы E-CUP:
🔹 1 июля — старт регистрации
🔹 19 августа — публикация задач
🔹 8 сентября — окончание приёма решений
🔹 13 сентября — оглашение победителей

Призовой фонд — 1 200 000 рублей. Зарегистрируйся и узнай первым про секретный подарок от команды Ozon Tech, который поможет лучшим участникам прокачать навыки и построить карьеру в e-com-бигтехе!

Решай задачи в нашем стиле! Не пропусти грандиозное ML-соревнование — присоединяйся к E-CUP

Читать полностью…

Анализ данных (Data analysis)

🌟 Algebraic-NCD — совсем свежая библиотека Python, которая предоставляет алгебраическое описание алгоритмов Deep Learning

Цель Algebraic-NCD — предоставить алгебраические описания алгоритмов глубокого обучения.

Алгебраические описания алгоритмов имеют массу приложений: например, они позволяют преобразовывать алгоритмы в диаграммы, что помогает легко понять архитектуру модели и т.д.
Ну и конечно алгебраические описания формируют основу для разных математических преобразований и для дальнейшего анализа алгоритмов.

🖥 GitHub
🟡 Анонс от автора в X

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Симуляция и рендеринг тканей в реальном времени

Симуляция и рендеринг тканей, особенно имеющих сложную структуру, в режиме реального времени довольно сложны и требуют больших затрат ресурсов. Исследование, представленное в рамках конференции SIGGRAPH 2024, было создано учеными из Шаньдунского и Нанкинского университетов в Китае с целью решить эту проблему при помощи нейросетей.

Плетеные ткани, как правило, имеют регулярно повторяющуюся структуру и рисунок. Существенное снижение нагрузки и уменьшение объема достигается за счёт автокодировщика – алгоритма, который кодирует паттерн этой структуры в латентный вектор с помощью энкодера, а затем расшифровывает декодером для получения реалистичного отображения.

Энкодер в нейронной сети отвечает за сжатие информации о форме объекта и его внешнем виде в латентный вектор. Для этого алгоритм сначала преобразует геометрическую структуру объекта и параметры его внешнего вида в числовые характеристики. Затем эти характеристики объединяются в один вектор через небольшую нейронную сеть, чтобы представить материал объекта в более компактном виде для дальнейшей обработки декодером.

Декодер же интерпретирует этот латентный вектор в изображение, сохраняя паттерн структуры и материал объекта.

Именно благодаря кодированию ткани в состояние латентного вектора нейросеть может отражать разные материалы, разделяя их, в отличие от некоторых других способов, требующих предварительного обучения под каждый тип материала.

Создатели представили ряд тестов, которые показали, что их инструмент способен в реальном времени рендерить ткани, а также редактировать параметры, такие как цвет, твёрдость, паттерн ткани и масштаб. В результате был достигнут баланс между качеством, скоростью и оптимальным использованием ресурсов компьютера.

🟡 Arxiv

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Ax — построение LLM-агентов на базе исследования Стэнфорда — DSP (demonstrate, search, predict)

npm install @ax-llm/ax

Ax позволяет несложно создавать интеллектуальных агентов, реализовывать бесшовную интеграцию с несколькими LLM и VectorDB для создания конвейеров RAG или агентов, способных решать сложные задачи.

🖥 GitHub
🟡 Доки

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Сталкиваетесь с проблемами в поиске болей клиентов? Не знаете, как правильно проводить качественные и количественные исследования?
Чувствуете, что вам не хватает знаний для уверенной работы в аналитике? 

Представьте, что вы умеете подготавливать гипотезы, проводить глубинные интервью и обрабатывать результаты. Вы уверенно используете карту эмпатии и кластеризацию для анализа данных.

Ваши навыки востребованы и вы становитесь незаменимым специалистом в своей компании. 

Присоединяйтесь к открытому бесплатному вебинару 24 июля в 20:00 и сделайте этот прыжок в будущее!

Регистрируйтесь на вебинар прямо сейчас и прокачайте свои навыки аналитика: https://otus.pw/n0Bb/

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8KLto6

Читать полностью…

Анализ данных (Data analysis)

⚡️ Llama-3.1: Обновление семейства моделей

Llama 3.1 - набор предварительно обученных и настроенных по инструкции генеративных моделей размером 8B, 70B и 405B (текст в тексте/текст на выходе). Модели Llama 3.1 с инструкциями (8B, 70B, 405B) оптимизированы для использования в многоязычных диалогах и превосходят многие из доступных моделей с открытым исходным кодом и закрытых моделей для чатов в распространенных отраслевых тестах.

Llama 3.1 - это авторегрессивная языковая модель, использующая оптимизированную архитектуру трансформаторов. В настроенных версиях используются контролируемая тонкая настройка (SFT) и обучение с подкреплением и обратной связью (RLHF) для согласования с предпочтениями человека в отношении полезности и безопасности.

▶️Доступные для скачивания модели LLaMa 3.1( полный список)

Pretrained:
Meta-Llama-3.1-8B
Meta-Llama-3.1-70B
Meta-Llama-3.1-405B
Meta-Llama-3.1-405B-MP16
Meta-Llama-3.1-405B-FP8

Fine-tuned:
Meta-Llama-3.1-8B-Instruct
Meta-Llama-3.1-70B-Instruct
Meta-Llama-3.1-405B-Instruct
Meta-Llama-3.1-405B-Instruct-MP16
Meta-Llama-3.1-405B-Instruct-FP8
Llama-Guard-3-8B
Llama-Guard-3-8B-INT8
Llama-Guard-2-8B
Llama-Guard-8B
Prompt-Guard-86M



▶️ Комментарии к версии 405B:

🟢MP16 (Model Parallel 16) - полная версия весов BF16.
Эти веса можно запустить только на нескольких нодах с использованием pipelined parallel инференса. Минимально требуется 2 ноды с 8 GPU.

🟢MP8 - полная версия весов BF16, но может быть развернута на одной ноде с 8 GPU с использованием динамического квантования FP8 (Floating Point 8).

🟢FP8 (Floating Point 8) - квантованная версия весов. Эти веса можно запустить на одной ноде с 8 GPU и с использованием статического квантования FP.

📌 Модель 405B требует примерно 750 ГБ и минимум двух нод (по 8 GPU) для инференса в MP16.

📌Загрузить модели можно с сайта Meta.Ai или с официальное репозитория на Huggingface Для скачивания нужно заполнить форму запроса доступа.


🟠UPD: Первая GGUF-версия на HF в Q8 уже появилась.


@ai_machinelearning_big_data

#AI #Llama3.1 #ML #LLM

Читать полностью…

Анализ данных (Data analysis)

Профессия аналитика данных — одна из самых высокооплачиваемых и перспективных в сфере IT.

На курсе «Аналитик данных» от Нетологии вы с нуля освоите необходимые навыки за 7 месяцев под руководством опытных наставников-практиков.

Вы изучите SQL, Python, Power BI — ключевые инструменты для работы с данными. Научитесь использовать статистические методы, строить и проверять гипотезы. Создадите 4 полноценных проекта для своего портфолио и выполните более 20 практических заданий.

А по окончании курса получите диплом о профпереподготовке и сможете претендовать на должность junior-аналитика.
Начните свой путь в сфере аналитики данных — присоединяйтесь к программе.

Промокод АНАЛИТИК-10 даст дополнительную скидку 10% от цены курса.

Записаться: https://netolo.gy/dj9s

Реклама. ООО "Нетология". Erid 2VSb5yvacac

Читать полностью…

Анализ данных (Data analysis)

ML: с чего начинается Data Science?

Приглашаем на открытый урок, где вы узнаете про область ML, которая лежит в основе Data Science и AI сегодня. 

🔹Расскажем, чем оно отличается от классического программирования и какие в ML существуют типы задач. 

✅ Практика: Решите первую задачу ML на языке Python 

В результате урока вы обучите свою первую модель машинного обучения для решения задачи классификации рукописных цифр

Урок приурочен курсу «Специализация Machine Learning» от Otus.

👉 Регистрация и подробности: 
https://otus.pw/krTC/?erid=LjN8JwL3N

Читать полностью…

Анализ данных (Data analysis)

🔥В OTUS стартует курс "Machine Learning. Professional", обучение на котором позволит последовательно освоить современные инструменты анализа данных и на профессиональном уровне создавать модели машинного обучения.

Студенты курса выбирают самостоятельно темы выпускных работ, поэтому все выпускные проекты на курсе–это ценные исследования для ML.

⚡24 июля в 18.00 мск приглашаем на открытый урок курса "Популярные ML-методы для поиска выбросов в данных".

На занятии:

- разберем задачу поиска аномалий;
- изучим как с помощью методов ML можно очищать данные от выбросов;
- в теории разберем несколько алгоритмов и применим их на практике.

👉Регистрация https://otus.pw/GGwO/?erid=LjN8KHDLN

При поступлении в группу обучения возможны разные способы оплаты и рассрочка платежа

Читать полностью…

Анализ данных (Data analysis)

🌟 Metarank — open-source сервис ранжирования для создания персонализированного семантического поиска и рекомендательных систем

Metarank позволяет реализовать персонализированное ранжирование статей, объявлений, результатов поиска — в общем отлично подходит для создания рекомендательных систем

Быстрый старт с Docker:

docker run -i -t -p 8080:8080 -v $(pwd):/opt/metarank metarank/metarank:latest standalone --config /opt/metarank/config.yml --data /opt/metarank/events.jsonl.gz


🖥 GitHub
🟡 Доки
🟡 Пример использования Metarank

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Стоит ли вам начинать карьеру в аналитике и Date Science? Онлайн-встреча, которая поможет понять

Вокруг работы с данными много мифов: сложно начать карьеру — просто начать карьеру — нужно начинать с бизнес-аналитики — всем надо в системные аналитики.

День открытых дверей «Как начать карьеру в аналитике и Data Science» поможет разобраться, что из этого правда, а что нет. Продюсеры Нетологии ответят на волнующие вопросы:

— По-прежнему ли высок спрос на аналитиков?
— В какие компании устраиваться на работу в сфере данных, чтобы хорошо зарабатывать?
— С чего стартовать в аналитике и Data Science и сложно ли это?

Участники встречи получат в подарок гайд «Как войти в сферу данных и найти своё направление». Он поможет принять взвешенное решение о старте карьеры в новой для вас профессии.

Приоткройте для себя двери в аналитику: https://netolo.gy/djxG

Реклама. ООО "Нетология". Erid: 2VSb5wuZdui

Читать полностью…

Анализ данных (Data analysis)

Яндекс Практикум и Томский государственный университет открывают набор на онлайн-программу «Дата-аналитика для бизнеса».

На этой программе вас ждут:

— очная форма обучения с занятиями и экзаменами в онлайн-формате;
— опыт преподавателей ТГУ и наставников Яндекса;
— диплом гособразца по итогам обучения.

Обучение можно оплатить целиком или вносить сумму частями перед началом каждого семестра. Вы сможете оформить госкредит — с его помощью государство погасит часть кредита за вас, а ежемесячный платёж составит от 500 ₽.

Узнать подробнее

Реклама. ООО «Яндекс». ИНН 7736207543

Читать полностью…

Анализ данных (Data analysis)

🌟 Pomegranate — библиотека Python для создания вероятностных моделей, таких как байесовские сети или марковские модели

pip install pomegranate

Модели, реализованные с помощью pomegranate, могут быть настроены более гибко, чем с помощью других библиотек. Например, можно создать классификатор Байеса, который использует различные типы распределений для каждого признака (например, для связанных со временем признаков — экспоненциальное распределение, а для других признаков — распределение Пуассона).

Или, скажем, можно построить единую модель из нескольких байесовских сетей или сделать классификатор Байеса со скрытой марковской моделью, который делает прогнозы по последовательностям.

🖥 GitHub
🟡 Доки
🟡 Примеры использования

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

⚡️ Линейная алгебра для CV и ML — мощный свободный учебник от университета Пенсильвании

Совсем свежий учебник, опубликован в конце марта.
Здесь на 785 страницах детально разбираются темы линейной алгебры, особенно актуальные для ML-приложений.

Вот несколько из разбираемых тем:
— понятие вектора и векторного пространства
— понятие линейного оператора
— связь операторов и матриц
— матричные разложения (LU, SVD и др)
— собственные вектора и собственные значения
— ортогональные, унитарные операторы
— симметричные и эрмитовы операторы
— квадратичные формы, приведение к главным осям

🟡 Linear algebra for Computer Vision, Robotics, and Machine Learning

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Lightly — фреймворк Python для самоконтролируемого обучения на изображениях

pip install lightly

Lightly имеет много возможностей:
во-первых, это большое количество готовых модулей (таких как функции потерь, функции активации);
во-вторых, это простота в использовании, обусловленная написанием в стиле PyTorch;
в-третьих, это поддержка пользовательских базовых моделей для самоконтролируемого предварительного обучения.

А ещё Lightly поддерживает распределенное обучение с помощью PyTorch Lightning.

🖥 GitHub
🟡 Доки

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Встречайте квантизованную версию Mistral Large Instruct 2407 GGUF

Доступны версии с разной степенью сжатия, в том числе 1 бит и 2 бита. Подробнее про квантизацию в целом
А это оригинальная, не квантизованная модель

🤗 Hugging Face

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥Готовы расширить свой стек и добавить востребованные инструменты NLP?

⚡Ждем вас на открытом уроке «Named Entity Recognition (NER): распознавание именованных сущностей» 5 августа в 20:00 мск

Мы расскажем, что такое NER, зачем это нужно и где применяется. Вы узнаете о подходах к решению этой задачи, метриках для оценки качества NER и увидите практические примеры для русского и английского языков.

Спикер Андрей Коняев — Consultant GenAI Machine Learning Engineering (Professional Research & Development Engineer I) в T-Systems International. 

👉Для регистрации пройдите тест https://otus.pw/d54x/?erid=LjN8K9TCq

Вебинар приурочен к старту курса Natural Language Processing (NLP), обучение на котором позволяет освоить различные языковые модели и создать собственный телеграм-бот.На курсе изучаются современные подходы и модели, которые на данный момент являются стандартом в области, но еще не успели войти в большинство программ, так как были предложены совсем недавно.

Читать полностью…

Анализ данных (Data analysis)

⚡️ Stability AI представляет Stable Video 4D — модель, которая позволяет генерировать разные ракурсы по загруженному видео

Stable Video 4D позволяет загружать 1 видео и получать видео с 8 новыми ракурсами.

🟡 Анонс Stable Video 4D
🟡 Статья

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

«Я в режиме реального времени поясняла структуру запросов / ответов в Postman и разбирала документацию в Swagger», — пишет аналитик, который прошел наш курс, а потом два технических собеседования в международные компании. Приятно, конечно ❤️

Если в 2024 году вы хотите:
— научиться выбирать стиль интеграции под вашу задачу;
— начать проектировать с нуля и описывать интеграции в современных стилях (API: REST, SOAP, gRPC и других, + брокеры сообщений);
— узнать как правильно собирать требования и моделировать в UML;
— подготовиться к собеседованию, решив более 100 заданий;
— запустить свой API на Python.

Значит наш курс для вас!

🚀 Начните с открытых бесплатных
уроков — переходите в бот курса и жмите «Старт»
👇
@studyit_help_bot

🚀 Скидка на курс
от канала — 1 000₽ на Stepik по промокоду MLDATA3 до конца июля.

Читать полностью…

Анализ данных (Data analysis)

🌟 SlowFast-LLaVA — метод повышения точности работы VLLM от Apple

Apple представляет SlowFast-LLaVA — метод, который позволяет добиться сравнимой или более высокой производительности по сравнению с видеомоделями SotA.

Эксперименты показывают, что SF-LLaVA превосходит существующие необучаемые методы на широком спектре задач, связанных с видео. В некоторых бенчмарках она достигает сравнимой или даже лучшей производительности по сравнению с современными VLLM, которые точно настраиваются на наборах видеоданных.

🟡 Arxiv

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 ZenML — фреймворк для упрощения и стандартизации MLOps процессов

pip install "zenml[server]" notebook

ZenML упрощает перенос ML-пайплайнов из ноутбуков в продакшн-среду.
Обеспечивает гарантированную воспроизводимость экспериментов за счет версионирования данных, кода и моделей.

ZenML также позволяет быстро переключаться между локальной и облачной средой, предоставляет готовые инструменты для сравнения и визуализации параметров и результатов, кеширования состояний конвейера для быстрых итераций и многое другое.

🖥 GitHub
🟡 Google Colab

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Реализация диффузионной модели с архитектурой UNet на чистом CUDA

В этом репозитории приведена реализация модели UNet на чистом CUDA с подробным описанием всех шагов.
Цель этого проекта — создать диффузионную модель на CUDA и достичь производительности PyTorch; выбрана архитектура UNet как ключевая архитектура для диффузионных моделей

В итоге, готовая модель была обучена на изображениях слонов из ImageNet 64x64 и теперь вполне успешно их генерирует.

🖥 GitHub

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

📌Skforecast — библиотека для прогнозирования временных рядов

pip install skforecast

Skforecast — это библиотека Python, которая облегчает использование моделей регрессии от scikit-learn для прогнозирования временных рядов.

Skforecast также работает с любыми моделями регрессии, совместимыми с API scikit-learn (LightGBM, XGBoost, CatBoost...)

🖥 GitHub
🟡 Доки
🟡 Примеры использования

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 Xorbits — масштабируемый Python фреймворк для задач ML и DS, ориентированный на скорость

Xorbits позволяет, к примеру, легко использовать данные для обучения генеративных моделей а также разворачивать обученные модели в своей инфраструктуре.

Xorbits может использовать несколько ядер/GPU, может работать на 1 машине или масштабироваться до тысяч машин для поддержки обработки терабайтов данных.
Xorbits предоставляет набор полезных библиотек для анализа данных и ML.

🖥 GitHub
🟡 Доки

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🖥 Geomstats — библиотека Python, позволяющая использовать нелинейные многообразия для обучения ML-моделей

pip install geomstats

Данные из многих прикладных областей тесно связаны с нелинейными многообразиями. Например, многообразие трехмерных вращений SO(3) естественным образом возникает при проведении статистического обучения на сочлененных объектах, таких как человеческий позвоночник или руки роботов.
Аналогично, другие многообразия возникают при моделировании сложных биологических объектов

🖥 GitHub
🟡 Доки

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 NeuralForecast — большая коллекция ML-моделей для прогнозирования

pip install neuralforecast

NeuralForecast предлагает множество моделей прогнозирования: от классических MLP и RNN, до новых моделей, таких как NBEATS, NHITS, TFT и других.

🖥 GitHub
🟡 Быстрый старт

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

⚡️ DeepSeek-V2-Chat-0628: обновленная версия Deepseek-V2

DeepSeek выложила в открытый доступ веса модели V2-Chat-0628. Это обновление флагманской Deepseek-V2, одной из лучших моделей в открытом доступе.
Согласно чартам LMSYS Chatbot Arena - эта модель №11 среди open-source моделей на сегодняшний день.

Детальные достижения:
🟢Hard Prompts 3-я позиция чарта;
🟢Coding 3-я позиция чарта;
🟢Longer Query 4-я позиция чарта;
🟢Math 7-я позиция чарта.

Основная особенность обновления - была оптимизирована возможность следования инструкциям в области "система", что значительно повышает удобство работы с иммерсивным переводом, RAG и другими задачами.
Одновременно с обновлением в репозитории на Huggingface, модель доступна по API в сервисе https://platform.deepseek.com.

💵 Стоимость API DeepSeek-V2-Chat-0628 (128K Context length):
Input - $0.14 / 1M tokens
Output - $0.28 / 1M tokens


⚠️ Размер модели ~ 480 Gb, для локального запуска формата BF16 потребуется 8х80GB GPU`s.

⚖️ Лицензирование кода: MIT
⚖️ Лицензирование модели: Своя лицензия семейства DeepSeek-v2

🟡Страница проекта
🟡Arxiv
🟡Модель на HF


@ai_machinelearning_big_data

#LLM #DeepSeekV2 #ML

Читать полностью…
Subscribe to a channel