data_analysis_ml | Unsorted

Telegram-канал data_analysis_ml - Анализ данных (Data analysis)

10807

Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚

Subscribe to a channel

Анализ данных (Data analysis)

📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 Microsoft только что выпустила Phi-4 LLM, обученный на 9,4 триллионах токенов.

Лицензия MIT!

🤗 HF: https://huggingface.co/microsoft/phi-4

🧠Demo: https://huggingface.co/spaces/Tonic/Phi-4

@ai_machinelearning_big_data

#phi4 #llm #Microsoft

Читать полностью…

Анализ данных (Data analysis)

🎉OLMo2 установили новый стандарт для релизов с открытым исходным кодом. 🫡

Пристегните ремни -
выпущен
подробный репорт о OLMo 2 . В нем 50 с лишним страниц о 4 важнейших компонентах конвейера развития LLM.

Они выпустил: Модели, датасеты, код обучения и все возможные данные. А вишенкой на торте стали журналы wandb.

Итак, если вы хотите создать современный LLM? Создатели OLMo 2 делятся полным рецептом.

-----

🔧 Ключевые методы в этой статье:

→ В OLMo 2 реализован двухэтапный подход к обучению: предварительное обучение на 4-5T токенах и обучение на специализированном Dolmino Mix 1124.

→ Архитектура отличается повышенной стабильностью благодаря RMSNorm, переупорядоченной нормализации и QK-норме для вычисления внимания.

→ Трехфазный конвейер тюнинга сочетает в себе контролируемую тонкую настройку, прямую оптимизацию предпочтений и обучение с подкреплением и проверяемым вознаграждением.

→ Инфраструктура обучения включает два кластера (Jupiter и Augusta) с оптимизированным управлением рабочей нагрузкой с помощью системы Beaker.

-----

💡 Основные выводы:

→ Стабильность обучения значительно повышается за счет фильтрации повторяющихся n-грамм и использования инициализации нормальным распределением

→ Обучение в середине обучения на высококачественных данных эффективно расширяет возможности модели

→ Усреднение веса модели неизменно повышает производительность

→ Оптимизация инфраструктуры имеет решающее значение для успешного обучения LLM

-----

📊 Результаты:

→ Модели 7B и 13B соответствуют или превосходят Llama 3.1 и Qwen 2.5, используя меньшее количество FLOPs

→ Оценки GSM8K: 67,5 для 7B, 75,1 для 13B

→ Показатели MMLU: 63,7 для 7B, 67,5 для 13B

💡Подробнее про модель
💡Paper
💡Blog
💡Demo

Читать полностью…

Анализ данных (Data analysis)

🔥 MarS — движок для симуляции финансовых рынков, основанный на генеративной модели, называемой Large Market Model (LMM)!

🌟 Цель проекта — создание реалистичных, контролируемых сценариев торговли, которые могут моделировать рыночные ордера и их влияние. MarS позволяет исследовать законы масштабирования модели LMM в финансовых рынках и ее потенциал для реальных приложений, таких как создание рыночных моделей и генерация рыночных сценариев.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

👩‍💻 Pathway — это фреймворк на Python для обработки данных в реальном времени, который поддерживает ETL-процессы, аналитические потоки и создание ИИ-конвейеров, включая работу с LLM и методами RAG!

🌟 Фреймворк предоставляет простой API на Python, который интегрируется с популярными ML-библиотеками и может использоваться для потоковой и пакетной обработки данных.

🔐 Лицензия: BSL-1.1

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🖥 CPU vs GPU

Очень хорошее и интуитивно понятное объяснение CPU vs GPU

Источник

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Хронология самых интересных ИИ релизов в 2024 году🔥

От Gemma до Llama 3.1 405B, от Sonnet 3.5 до o3 !

https://huggingface.co/spaces/reach-vb/2024-ai-timeline

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 3DTrajMaster — это инструмент, предназначенный для работы с трехмерными траекториями в контексте анализа и обработки данных движения объектов!

🌟 Данный проект предлагает инструменты для эффективной работы с данными, которые включают трехмерные координаты объектов, а также их визуализацию и анализ траекторий в 3D-пространстве.

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 OpenCoconut — реализация парадигмы латентного рассуждения, известной как Chain of Continuous Thought (COCONUT)!

🌟 Основная идея заключается в генерации "мыслей" в латентном пространстве (состояниях модели) перед началом декодирования ответа. Этот подход использует скрытые состояния модели на этапе предварительной подготовки данных для повышения качества генерации.

🌟 Проект ориентирован на задачи, такие как математические вычисления, программирование и общий анализ данных, основываясь на синтетическом наборе данных. В будущем планируется улучшение функции потерь, добавление методов раннего завершения генерации и адаптивного переключения между латентным пространством и языковым. Это может повысить точность и гибкость моделей, работающих с последовательными задачами.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

⚡️ Введение в тензорные сети

📌 Урок5
📌 Урок 1 / Урок2 / Урок3 / Урок4
📌 Colab

Читать полностью…

Анализ данных (Data analysis)

🔥 identity-rag-customer-insights-chatbot — проект для создания чат-бота, который использует систему IdentityRAG для объединения и анализа данных о клиентах!

🌟 Система решает задачи по разрешению идентификации клиентов и предоставлению единой, и актуальной информации о клиентах из различных источников.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 InvSR — новый метод для улучшения качества изображений!

🔗 Ссылка: *клик*
🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 agent_tutorials — серия обучающих материалов по созданию и разработке искусственных агентов с использованием различных технологий, таких как LangGraph, CrewAI и AutoGen!

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🖥 Эта статья объясняет концепцию машин Тьюринга, которая является основополагающей в теории вычислений и была предложена Аланом Тьюрингом в 1936 году!

🌟 В статье описывается, как работает машина Тьюринга, что она может и не может вычислять, а также как она связана с современными компьютерами.

🌟 Автор рассматривает механизмы работы машины Тьюринга, её элементы (лента, головка и состояние), а также обсуждает такие ограничения вычислений, как задача о остановке (Halting problem). Статья включает примеры программ для демонстрации возможностей машины Тьюринга и предоставляет интерактивную среду для экспериментов с программами, работающими на этой модели.

🔗 Ссылка: *клик*

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 QuantResearch — репозиторий, который содержит материалы, связанные с количественным анализом, стратегиями и тированием гипотез в области финансов!

🌟 Проект включает разнообразные методы, такие как машинное обучение, глубокое обучение, алгоритмическая торговля и оценка рисков.

В нем представлены примеры кода для портфельной оптимизации, алгоритмической торговли , использования машинного обучения и разработки торговых стратегий.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

👀 Ollama-OCR

Пакет для Python и приложение Streamlit, использующие модели зрения Ollama для извлечения текста из изображений различных форматов, с поддержкой пакетной обработки.

pip install ollama-ocr

Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 miniperplx — минималистичный поисковый движок, работающий на базе ИИ!

🌟 Он использует модели, такие как GPT-4o и Claude 3.5, для предоставления ответов на запросы, а также поддерживает функции веб-поиска, поиск по URL, прогноз погоды, выполнение программного кода, перевод текста и многие другие возможности.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

💡Академия Alibaba DAMO выпустили мультимодельный Vision-language датасет

 6.5M изображений + 0.8B текста из 22k часов обучающих видео
 Охватывает такие предметы, как математика, физика и химия.
 Apache 2.0

- Датасет: https://huggingface.co/datasets/DAMO-NLP-SG/multimodal_textbook
-  Статья: https://huggingface.co/papers/2501.00958

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Большая подборка интересных статей, посвященных LLM.

-The GPT-4 barrier was comprehensively broken
- Some of those GPT-4 models run on my laptop
- LLM prices crashed, thanks to competition and increased efficiency
- Multimodal vision is common, audio and video are starting to emerge
- Voice and live camera mode are science fiction come to life
-Prompt driven app generation is a commodity already
- Universal access to the best models lasted for just a few short months
- Agents” still haven’t really happened yet
- Evals really matter
- Apple Intelligence is bad, Apple’s MLX library is excellent
- The rise of inference-scaling “reasoning” models
- Was the best currently available LLM trained in China for less than $6m?
- The environmental impact got better
- The environmental impact got much, much worse
- The year of slop
- Synthetic training data works great
- LLMs somehow got even harder to use
- Knowledge is incredibly unevenly distributed
- LLMs need better criticism

⚡️ Полный обзор

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

⚡️ 50 статей/моделей/блогов по 10 направлениям в AI: LLMs, Benchmarks, Prompting, RAG, Agents, CodeGen, Vision, Voice, Diffusion, Finetuning.

Если вы начинаете изучать мл с нуля, это хороший список.

Секция 1:топовые LLMs

- GPT1, GPT2, GPT3, Codex, InstructGPT, GPT4 статьи. GPT3.5, 4o, o1, и o3.
- Claude 3 и Gemini 1, Claude 3.5 Sonnet и Gemini 2.0 Flash/Flash Thinking. Gemma 2.
LLaMA 1, Llama 2, Llama 3 статьи для понимания внутреннего устройства моделей.
- Mistral 7B, Mixtral и Pixtral
- DeepSeek V1, Coder, MoE, V2, V3.
- Apple Intelligence

Секция 2: бенчмарки

- MMLU paper - the main knowledgebenchmark, next to GPQA and BIG-Bench. In 2025 frontier labs use MMLU Pro, GPQA Diamond, and BIG-Bench Hard.
- MuSR paper - evaluating long context, next to LongBench, BABILong, and RULER. Solving Lost in The Middle and other issues with Needle in a Haystack.
- MATH paper.

🔥 Полный список

Читать полностью…

Анализ данных (Data analysis)

🔥 eliza — это проект, направленный на создание платформы для автономных агентов, способных выполнять сложные задачи, взаимодействовать с пользователями и использовать внешние инструменты!

🌟 Цель проекта — упростить процесс разработки агентов, которые могут действовать независимо, обрабатывать команды на естественном языке и решать поставленные задачи с минимальным вмешательством человека. Такие агенты могут использоваться как чат-боты, NPC в видеоиграх, для трейдинга и многих других задач!

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 pyRiemann — это библиотека на Python для анализа многомерных данных с использованием римановой геометрии положительно определенных матриц!

🌟 Она построена на API scikit-learn и предоставляет высокоуровневые инструменты для обработки данных, классификации и машинного обучения. Основное применение библиотеки связано с биосигналами (например, EEG, MEG, EMG), интерфейсами мозг-компьютер (BCI), а также дистанционным зондированием, включая обработку радарных изображений и гиперспектральных данных.

🔐 Лицензия: BSD-3-Clause

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Уголок AI-энтузиастов от Сбера 🤖

Sber AI Lab — центр экспертизы Сбера в области искусственного интеллекта и активный участник глобального научного комьюнити.

✅ Команда создаёт полезные алгоритмы, фреймворки и технологии в разных сферах: от банкинга до медицины.

✅ Топ по количеству научных статей на A*/A конференции и Q1 журналы в Сбере

✅ Среди open-source решений лаборатории ИИ: LightAutoML (победитель Kaggle Grand Prix 2024), RePlay, pytorch-lifestream, eco2ai и другие инструменты. Узнать больше о решениях можно на GitHub.

Ты можешь стать частью нашей команды и сделать свой вклад в развитие AI-проектов в интересных тебе направлениях тут.

Читать полностью…

Анализ данных (Data analysis)

Будьте честны с собой )

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 chai-lab — проект, связанный с предсказанием биомолекулярных структур!

🌟 Он включает в себя Chai-1, передовую модель для предсказания структуры биомолекул, разработанную с использованием современных методов машинного обучения, включая диффузионные модели и сверточные нейронные сети. Этот проект ориентирован на автоматизированное создание и анализ сложных молекулярных структур, что может быть полезно в биоинформатике и фармацевтических исследованиях. Программный код включает в себя инструменты для работы с различными молекулярными данными, такими как MSAs (multiple sequence alignments), атомные структуры, шаблоны и другие специфические биомолекулярные данные.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Позаботился о подарках для родных и близких?
Позаботься и о лучшем подарке для себя — новая работа ждёт тебя в Сбере!✨
Заходи на сайт rabota.sber.ru — здесь сбываются амбициозные проекты, классные коллеги и крутые возможности. 🔥
В Новый год — с новой работой в Сбере.💚

Читать полностью…

Анализ данных (Data analysis)

Современные технологии все глубже интегрируют машинное обучение, которое уже давно вышло за рамки простой обработки данных. Сегодня ИИ способен анализировать поведение пользователей, адаптироваться под их требования и помогать принимать взвешенные решения. Особенно заметно это в секторе электронной коммерции, где ИИ улучшает взаимодействие между покупателями и продавцами.

Команда Авито презентовала новую версию поиска, которую получилось усовершенствовать с помощью Avito Ranker 3 — собственной технологии ранжирования. ИИ изменил логику выдачи объявлений: время размещения больше не является ключевым фактором для поиска. Вместо этого система обращает внимание на более важные для покупателя параметры: качество описания и фото, цену и хороший уровень сервиса продавца.

Благодаря этому, число показов нерелевантных и некачественных объявлений снизилось вдвое, а пользователи стали на 17% чаще переходить из поиска прямо в карточки товаров. Кроме того, конверсия покупок возросла на 25%, что свидетельствует об эффективности новой системы.

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

💡 Qwen выпустил QvQ 72B OpenAI o1-мультимодальную модель с ризонингом с возможностями зрения 🔥

TLDR
🏆SoTA мультимодальный с открытым исходным кодом
🧠 Способность к пошаговому рассуждению
💪🏾 Конкурентный балл MMMU с o1, GPT-4o и Sonnet 3.5
🔥 Выигрывает у GPT-4o и Sonnet 3.5 на MathVista и MathVision

> pip install mlx-vlm

https://huggingface.co/collections/mlx-community/qvq-72b-preview-676b345a6f93172ba980c0d5

Читать полностью…

Анализ данных (Data analysis)

⚡️ Исследователи Microsoft выпустили лабораторию AIOpsLab: Комплексный ИИ-фреймворк с открытым исходным кодом для агентов AIOps

Исследователи Microsoft совместно с группой ученых из Калифорнийского университета в Беркли, Иллинойского университета в Урбане-Шампейне, Индийского научного института и колледжа Агнес Скотт разработали AIOpsLab - систему оценки, предназначенную для систематического проектирования, разработки и развития агентов AIOps.

Эта платформа с открытым исходным кодом охватывает весь жизненный цикл облачных операций - от обнаружения неисправностей до их устранения.

Предлагая модульную и адаптируемую платформу, AIOpsLab поддерживает исследователей и практиков в повышении надежности облачных систем и снижении зависимости в системах.

Фреймворк AIOpsLab включает в себя несколько ключевых компонентов.

Центральный модуль, обеспечивает взаимодействие между агентами и облачными средами, предоставляя описания задач, API-интерфейсы действий и обратную связь.

Генераторы отказов и рабочих нагрузок воспроизводят реальные условия для испытания тестируемых агентов.

Наблюдаемость, еще один краеугольный камень структуры, обеспечивает всесторонние телеметрические данные, такие как журналы, метрики и трассировки, для помощи в диагностике неисправностей.

$ git clone <CLONE_PATH_TO_THE_REPO>
$ cd AIOpsLab
$ pip install poetry
$ poetry install -vvv
$ poetry shell


Github
Запуск
Статья

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 MI300X vs H100 vs H200 Benchmark Part 1: Training – CUDA Moat Still Alive

Опубликован новый интересный анализ - сравнение реальных характеристик AMD MI300X и NVIDIA H100+H200 с практическими рекомендациями о том, как стек AMD ROCm может догнать CUDA от NVIDIA.

Производительность обучения, пользовательский опыт, удобство использования, Nvidia, AMD, GEMM, внимание, сетевые технологии, InfiniBand, Spectrum-X Ethernet, RoCEv2 Ethernet, SHARP, стоимость.

Отличное чтиво !

📌 Читать

@data_analysis_ml

Читать полностью…
Subscribe to a channel