data_analysis_ml | Unsorted

Telegram-канал data_analysis_ml - Анализ данных (Data analysis)

10807

Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚

Subscribe to a channel

Анализ данных (Data analysis)

⚡️ Этот гайд демонстрирует, как использовать Florence 2 с Ultralytics YOLO для обнаружения объектов, сегментации изображений и создания визуализаций на основе текстовых промпов, например, для создания подписей к изображениям.

Microsoft выпустила модель Florence-2 в прошлом году. Это мощная CV модель зрения, которая использует подход, на подсказках, для решения широкого спектра задач, связанных со зрением и языком зрения. Она может интерпретировать простые текстовые подсказки для выполнения таких задач, как создание надписей, обнаружение объектов и сегментация.

Для обучения в гайде используется набор данных FLD-5B, содержащий 5,4 миллиарда аннотаций к 126 миллионам изображений.

📌 Гайд
📌 Colab

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🌟 ChatTTS — генеративная text2speech модель с упором реалистичность

import ChatTTS
from IPython.display import Audio

chat = ChatTTS.Chat()
chat.load_models()

texts = ["<PUT YOUR TEXT HERE>",]

wavs = chat.infer(texts, use_decoder=True)
Audio(wavs[0], rate=24_000, autoplay=True)


ChatTTS — это модель преобразования текста в речь, разработанная специально для сценариев диалога, таких как LLM-ассистент.
ChatTTS поддерживает как английский, так и китайский языки (если кому актуально).

🖥 GitHub
🤗 Погонять в Hugging Face
🟡 Страничка ChatTTS

Читать полностью…

Анализ данных (Data analysis)

🔥 В chat.qwenlm.ai chat теперь доступны голосовой режим + режим видеочата

Более того китайцы выложили код своей Qwen2.5-Omni-7B - единой omni-модели, которая может понимать текст, аудио, изображение и видео.

Они разработали архитектуру "thinker-talker", которая обеспечивает одновременное размышление модели и ее разговор .

Вскоре обещают выпустить в опенсорс модели на еще большее количество параметров.

Просто топ, бегом тестить.

🟢Попробовать: https://chat.qwenlm.ai
🟢Paper: https://github.com/QwenLM/Qwen2.5-Omni/blob/main/assets/Qwen2.5_Omni.pdf
🟢Blog: https://qwenlm.github.io/blog/qwen2.5-omni
🟢GitHub: https://github.com/QwenLM/Qwen2.5-Omni
🟢Hugging Face: https://huggingface.co/Qwen/Qwen2.5-Omni-7B
🟢ModelScope: https://modelscope.cn/models/Qwen/Qwen2.5-Omni-7B

@ai_machinelearning_big_data

#qwen #release #Omni

Читать полностью…

Анализ данных (Data analysis)

Капибарам нужна ваша помощь на T-CTF

У них лапки, и они не могут защитить код от уязвимостей. Выручите их на ИТ-соревновании от Т-Банка с шансом выиграть приз до 420 000 ₽.

Без навыков в ИТ тут не обойтись — задания рассчитаны на разработчиков, QA- и SRE-инженеров, аналитиков и других ИТ-специалистов уровня middle и senior.

Вот что вас ждет:

— Выберите Лигу Разработки или Лигу Безопасности по своим скиллам. Если участвуете впервые, можно потренироваться на демозаданиях.
— Соревнуйтесь один или в команде до 3 человек. Организаторы помогут найти команду, если нет своей.
— Подключайтесь онлайн или приходите офлайн — в ИТ-хаб Т-Банка в одном из 6 городов России.
— Решайте задания по спортивному хакингу — для этого у вас будет 36 часов.

Соревнование пройдет 19 и 20 апреля.

Попробуйте свои силы — успейте зарегистрироваться до 18 апреля.

Реклама. АО «ТБанк», лицензия ЦБ РФ № 2673, erid:2RanymxoPwF

Читать полностью…

Анализ данных (Data analysis)

🖥 Aiopandas - легковесный патч для Pandas, который добавляет нативную async поддержку для самых популярных методов обработки данных: map, apply, applymap, aggregate и transform.

Позволяет без проблем передавать async функции в эти методы. Библиотека автоматически запустит их асинхронно, управляя количеством одновременно выполняемых задач с помощью параметра max_parallel.

✨ Ключевые возможности:

▪ Простая интеграция: Используйте как замену стандартным функциям Pandas, но теперь с полноценной поддержкой async функций.
▪ Контролируемый параллелизм: Автоматическое асинхронное выполнение ваших корутин с возможностью ограничить максимальное число параллельных задач (max_parallel). Идеально для управления нагрузкой на внешние сервисы!
▪ Гибкая обработка ошибок: Встроенные опции для управления ошибками во время выполнения: выбросить исключение (raise), проигнорировать (ignore) или записать в лог (log).
▪ Индикация прогресса: Встроенная поддержка tqdm для наглядного отслеживания процесса выполнения долгих операций в реальном времени.

🖥 Github: https://github.com/telekinesis-inc/aiopandas

#python #pandas #asyncio #async #datascience #программирование #обработкаданных #асинхронность

Читать полностью…

Анализ данных (Data analysis)

🔥Вышел новый ИИ-тренер для геймеров от Nvidia: G-Assist

Это ваш бесплатный оффлайн-компаньон, который поможет:

🎮 Оптимизирует настройки игры под ваш ПК
⚔️ Подбирает билды для боссов, данжей и Dota
🎧 Управляет музыкой в Spotify
🤖 Работает локально, но можно подключить API Gemini
💬 Общение через текст или голос

G-Assist бесплатнен для всех пользователей.

https://www.nvidia.com/en-us/geforce/news/g-assist-ai-companion-for-rtx-ai-pcs/

Читать полностью…

Анализ данных (Data analysis)

📌 72B слишком много для VLM? А 7B параметров недостаточно!

QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.

Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.

Модель выдает более подробные и структурированный ответы.

💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.

📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.

🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.

Еще один крутой релиз понедельника!

🟢Блог: https://qwenlm.github.io/blog/qwen2.5-vl-32b/
🟢Попробовать: https://chat.qwen.ai
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
🟢Модель: https://modelscope.cn/models/Qwen/Qwen2.5-VL-32B-Instruct

@ai_machinelearning_big_data


#AI #ML #LLM #Dataset #HuggingFace

Читать полностью…

Анализ данных (Data analysis)

📊 Бесплатный вебинар по BI-аналитике: «Tableau: работа с визуализациями и построение дашборда»

⏰ 1 апреля (вторник) в 20:00 мск

💡 На вебинаре вы узнаете:
+ Основные типы визуализаций в Tableau и их применение
+ Как строить удобные и понятные дашборды для анализа данных
+ Создадим на практике дашборд с интерактивными элементами шаг за шагом
+ Как применить полученные знания в бизнес-аналитике, маркетинге и отчетности
+ Лучшие актуальные кейсы визуализации данных для аналитики в 2025 году

📝 Кому будет полезен вебинар:
- Аналитикам данных
- Маркетологам
- Продуктовым менеджерам
- Всем, кто хочет визуализировать данные для принятия решений

Вебинар в рамках курса «BI-аналитика»
🎁 Участники получат скидку на курс!

👉 Регистрация: https://otus.pw/PIXn/?erid=2W5zFG1xZVr

#реклама
О рекламодателе

Читать полностью…

Анализ данных (Data analysis)

👩‍💻 Neural Structured Learning (NSL) — это фреймворк для обучения нейронных сетей с использованием структурированных сигналов, таких как графы и данные с враждебными искажениями!

🌟 NSL позволяет улучшать точность моделей, особенно при ограниченном объёме размеченных данных, за счёт объединения как размеченных, так и неразмеченных данных.

🔍 Основные возможности:

🌟 API для работы с графами и враждебными искажениями на базе TensorFlow и Keras.

🌟 Поддержка создания графов и входных данных для обучения.

🌟 Универсальность для различных архитектур (CNN, RNN и др.) и методов обучения (контролируемого, частично контролируемого и др.).

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 Transformers Laid Out

Лучший способ изучить PyTorch — создать что-нибудь с его помощью на практике.

В этом блоге представлен пошаговый гайд по написанию трансформерам с помощью PyTorch с нуля.🖥

📌 Гайд
📌 Что под капотом у PyTorch
📌Видео объяснения базы по тензорам

Читать полностью…

Анализ данных (Data analysis)

⚡️ JARVIS-VLA – модель обучения масштабных моделей «визуально-языкового взаимодействия» (Vision Language Models) для игры с использованием клавиатуры и мыши.

Проект заточен под игру в Minecraft, где модель способна выполнять более 1 000 различных атомарных задач таких как крафтинг, плавка, готовка, добыча ресурсов и даже сражения.

▪ Инновационный подход к обучению
Модель превозносит на 40% по сравнению с лучшими агентами-базами на разнообразном наборе атомарных задач.

▪ Достижение новых стандартов в Minecraft
Подход JARVIS-VLA превосходит традиционные методы имитационного обучения, демонстрируя передовые результаты и устанавливая новые стандарты производительности в управлении агентами в игровом мире Minecraft.

▪ Применение в реальных случаях
Использование данной модели в Minecraft открывает широкие возможности для автоматизации и оптимизации игровых процессов, что может быть интересно не только геймерам, но и исследователям в области ИИ, стремящимся расширить границы взаимодействия человека с компьютерными агентами.

HF
Статья

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Вы тоже игнорируете полезные советы и прокачиваетесь по-своему? 😁

Спойлер: ваш способ намного эффективнее, если в нем есть Data Fusion! 🚀

Это ежегодное онлайн-соревнование по анализу данных и машинному обучению для специалистов Data Science от Т1 и ВТБ. Общий призовой фонд — 3 000 000 рублей 🔥

В этом году участников ждут 2 основные задачи:

«Label Craft» — про предсказание категории товаров.

«4 Cast» — про предсказание динамики платежей на последующие 12 недель.

И одна образовательная задача — «Distribution».

А ещё будет специальная номинация Companion за лучшие публичные решения, в которой победителей определит жюри, учитывая поддержку со стороны других конкурсантов в чате соревнования.

📆 Даты проведения соревнования: с 13 февраля по 7 апреля 2025 года.

❗️Формат — онлайн: участвовать можно из любой точки мира.

Регистрируйся на соревнование прямо сейчас!

Информация о рекламодателе

Читать полностью…

Анализ данных (Data analysis)

💪 Качаем скиллы PostgreSQL!

10 апреля 2025 года пройдет бесплатное комьюнити-мероприятие из серии PG BootCamp Russia — конференция, направленная на приобретение практических навыков при работе с СУБД PostgreSQL.

🔵Программа рассчитана как на начинающих специалистов, так и на более опытных разработчиков, желающих углубить знания в части ядра и экосистемы продукта
🔵 Ведущие эксперты в области СУБД проведут мастер-классы и лекции по наиболее востребованным и интересным темам
🔵Для тех, кто не сможет присутствовать очно, предусмотрена онлайн-трансляция

🧑‍🎓 Все участники получат электронные сертификаты, подтверждающие приобретение новых знаний и навыков.

📌 Дата и время: 10 апреля, в 10:00 (по ЕКБ)
Формат: офлайн/онлайн
Место проведения: конгресс-отель «Екатеринбург»

Зарегистрируйтесь сейчас и приготовьтесь к захватывающему путешествию в мир СУБД!

Реклама. ООО "ТАНТОР ЛАБС" ИНН 9701183207 Erid: 2W5zFJHvTwv

Читать полностью…

Анализ данных (Data analysis)

Хотите получить много практики на реальных задачах, собрать портфолио и узнать как выглядит рабочий день аналитика?

CEO Simulative и эксперт с большим опытом в аналитике, Андрон Алексанян организовал бесплатный интенсив, где вы будете решать реальные задачи, с которыми аналитики сталкиваются на работе

На прямых эфирах вы сделаете:
🟠Анализ активности пользователей с помощью SQL
🟠Анализ маркетинговых активностей с помощью Python
🟠ABC анализ ассортиментной матрицы в Excel (уже прошел, но вам будет доступна запись)

Во время эфиров вы узнаете много лайфхаков, а также будете получать полезные материалы для развития в аналитике на протяжении всего интенсива

❗️Знать Python и SQL не обязательно — все будем разбирать с нуля

🕗 Встречаемся на новом эфире уже сегодня, 20 марта в 19:00 по мск

😶Участвовать в бесплатном интенсиве

Читать полностью…

Анализ данных (Data analysis)

⭐️ Reasoning-v1-20m

Синтетический набор данных, содержащий более 22 млн цепочек рассуждений для прометав общего назначения в различных областях.

Большой датасет, содержащих следы рассуждений для различных тем: связанных с кодом/математикой, социальных сферах и естественных наук и тд.

https://huggingface.co/datasets/glaiveai/reasoning-v1-20m

#dataset #Reasoning

Читать полностью…

Анализ данных (Data analysis)

🎉 Выпущен Техрепорт Wan! 🚀

📖 https://arxiv.org/abs/2503.20314

Wan 2.1 — это открытый инструмент для генерации видео от Alibaba.

В отчете описана архитектура модели, конвейер обработки данных, обучение модели, повышение ее эффективности, алгоритм редактирования видео и т. д.

🟢Официальный сайт: https://wan.video
🟢Github: https://github.com/Wan-Video/Wan2.1
🟢HF: https://huggingface.co/Wan-AI
🟢Modelscope: https://modelscope.cn/organization/Wan-AI

#WAN #OpenSource #VideoGeneration

Читать полностью…

Анализ данных (Data analysis)

Всем привет! Мы собираем команду для запуска AI-экспериментов в Екоме и Райдтехе Яндекса.

Наша цель — создать пространство для инженеров и продактов, которые хотят запускать эксперименты и видеть быстрые бизнес-результаты. Откликайтесь, если вы хотите реализовать свои идеи в крупном бизнесе, и у вас есть успешный опыт в запуске проектов с искусственным интеллектом!

Рассмотрим ваши идеи и найдем им лучшее применение в проектах. Присоединяйтесь к нам, чтобы вместе создавать будущее! 💡✨

Для отклика пишите Эльмире: @mirafedya

Читать полностью…

Анализ данных (Data analysis)

🤖 Awesome Weekly Robotics

Репозиторий Awesome Weekly Robotics на GitHub, представляет собой большую коллекцию проектов, инструментов и ресурсов по робототехнике с открытым исходным кодом.

🔗 Github

Читать полностью…

Анализ данных (Data analysis)

⚡️ Проект 3DGRUT представляет собой набор официальных реализаций методов 3D Gaussian Ray Tracing (3DGRT) и 3D Gaussian Unscented Transform (3DGUT).

💡 Основная идея:
Проект предлагает альтернативный подход к традиционному рендерингу, основанный на трассировке лучей, где вместо точечных лучей используются объёмные гауссовы частицы. Это позволяет моделировать сложные эффекты, например, камеры с искажениями (роллинг-шаттер) и временные эффекты.

⚙️ Гибридный подход:
3DGRUT объединяет преимущества растеризации и трассировки лучей – первичные лучи можно рендерить быстро через растеризацию, а вторичные лучи обрабатываются с помощью трассировки, что повышает гибкость и производительность.

🚀 Текущая стадия:
Проект находится на стадии альфа-версии. Он включает демонстрационную среду (Playground) для тестирования и экспериментов, а также предоставляет подробные инструкции по установке, настройке и запуску.

🔧 Требования и установка:
Для работы проекта требуется Python (3.10+), соответствующие зависимости, а также поддержка OpenGL и других библиотек. В репозитории описаны команды для установки необходимых пакетов и запуска тренировочного процесса.

Проект предназначен для исследователей и разработчиков, желающих экспериментировать с новыми методами рендеринга, а также для тех, кто интересуется интеграцией современных подходов в компьютерную графику.

📌 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

А вот и Gemini 2.5 Pro Experimental — самая интеллектуальная модель Google

Теперь это лучшая не ризонинг модель, которая опередила на бенчмарках Sonnet 3.5.

Без оптимизаций Gemini 2.5 Pro Experimental лидирует в таких математических и научных бнчмарках GPQA и AIME 2025.

Кроме того, модель набрала 18,8 % баллов на последнем экзамене человечества.

💡Это экспериментальный релиз демонстрирует передовые результаты во многих бенчмарках и прекрасно справляется со сложными задачами и предоставлять более точные ответы.

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-pro

#google #Gemini

Читать полностью…

Анализ данных (Data analysis)

🔥 Helix — это платформа для создания и развертывания AI-приложений с использованием декларативных конвейеров, интеграции знаний и API!

🌟 Она позволяет описывать AI-решения в YAML-файле (helix.yaml), что упрощает их настройку, тестирование и развертывание. Helix ориентирован на разработчиков, которые хотят строить генеративные AI-приложения с гибкостью и полной приватностью.

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🧠 Neuralink с открытым исходным кодом с использованием активности мозга обезьяны для управления роботизированными руками 🙉

Проект Jenkins исследует интерфейсы мозг-компьютер путем декодирования нейронной активности в движения роботов и генерации синтетических мозговых данных.

Используя нейронные записи мозговой активности обезьяны по имени Дженкинс, исследователи разработали модели для преобразования мозговых сигналов в движения роботизированной руки.

Лидер (рука1) двигается человеком, а Фоловер (рука 2) имитирует эти движения на основе симулированной нейронной активности обезьяны Дженкинса. Машины обучения (ML) используются для создания замкнутого цикла:
Кодирование: Transformer модель генерирует синтетические нейронные спайки из данных движения Лидера, симулируя, как бы выглядела активность мозга Дженкинса для этого движения.

Декодирование: Многослойный перцептрон (MLP) декодирует эти синтетические спайки обратно в скорости рук, которые используются для управления Фоловером.
Этот процесс создает двусторонний цикл: движение человека → симулированная нейронная активность → декодированные движения → действие робота.

В проекте используются роботизированные руки и интерактивная веб-консоль для генерации данных о работе мозга в режиме реального времени с помощью джойстика.

Проект имеет потенциальные применения в моторных протезах (например, для помощи парализованным людям управлять роботизированными конечностями) и нейронаучных исследованиях (понимание, как мозг кодирует движение). Это также имеет образовательное значение, демонстрируя применение ML в сложных нейронаучных задачах.

Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

⚡️ Alibaba только что выпустила TaoAvatar на Hugging Face

Реалистичные говорящие аватары в полный рост для дополненной реальности с помощью 3D-гауссовых сплатов.

Он обеспечивает точное управление мимикой и движениями, работая в реальном времени даже на мобильных устройствах.

Метод использует нейросетевую дистилляцию, достигая 90 FPS на Apple Vision Pro.

🟡Проект
🟡Статья
🟡Видео
🟡Демка

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Бизнесу данные нужны как воздух📊

На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.

На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.

С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:

– Аналитика данных.
– Data Science.
– Инженерия данных.

После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио. Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy

Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wd36Jc

Читать полностью…

Анализ данных (Data analysis)

🔥 Tripo MCP Server

Основная функция tripo-mcp заключается в генерации 3D-объектов на основе текстовых описаний с использованием API Tripo и их импорте в Blender. Проект находится на стадии альфа-версии.

📌 Туториал: https://tripo3d.ai/blog/cursor-tripo-mcp-tutorial
📌 Github: https://github.com/VAST-AI-Research/tripo-mcp

@data_analysis_ml


#blendermcp #vibecoding #tripo3d

Читать полностью…

Анализ данных (Data analysis)

🖥 YT Navigator — это приложение на основе искусственного интеллекта, предназначенное для эффективного поиска и взаимодействия с контентом YouTube-каналов.

Оно позволяет пользователям выполнять семантический поиск по видео, получать точные временные метки и извлекать информацию из часов видеоматериалов за считанные секунды.

📌 Основные функции YT Navigator:

Семантический поиск: Возможность находить релевантные сегменты видео с точными временными метками на основе естественных языковых запросов.

Интерактивное общение: Пользователи могут "общаться" с содержимым канала, получая ответы на вопросы, основанные на транскриптах видео.

Экстракция информации: Быстрое извлечение ключевой информации из большого объёма видеоконтента, что экономит время и усилия при анализе материалов.

Преимущества использования YT Navigator:

Экономия времени: Быстрый доступ к конкретной информации без необходимости просмотра длительных видеороликов.

Удобство: Интуитивно понятный интерфейс и мощные функции делают процесс поиска и анализа видеоконтента более эффективным.

YT Navigator особенно полезен для исследователей, аналитиков и всех, кто работает с большими объёмами видеоданных, предоставляя инструменты для быстрого и точного анализа контента.

📌 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

💬 OPEN AI добавили API 3 новых SOTA аудио-модели.

🗣️ Две модели преобразования речи в текст, которые, как заявляют разработчики, превосходят Whisper.

💬 1 Новая модель TTS - которой можно указать *как* ей говорить.
Поддерживает функцию задания интонации, тона, тембра голоса и еще множества других параметров с помощью промпта.

🤖 Еще OpenAi выпустили Agents SDK, который для создания голосовых агентов.

Через час состоится стрим, где покажут примера создания голосовых агентов с новыми аудиомоделями.

📌 Потестить можно здесь: https://www.openai.fm/

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥 Postiz — это инструмент для планирования публикаций в социальных сетях с использованием ИИ!

🌟 Он позволяет управлять контентом на таких платформах, как Instagram, YouTube, LinkedIn и другие. Postiz включает аналитику, возможности совместной работы и интеграцию с различными инструментами. Доступна как облачная, так и локальная версия. Технологический стек включает Next.js, NestJS и NX.

🔐 Лицензия: AGPL-3.0

🖥 Github

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🚀 Llama-3_3-Nemotron-Super-49B-v1 — это крупная языковая модель (LLM) от NVIDIA, созданная на базе архитектуры Llama 3 и усовершенствованная с использованием технологий NVIDIA.

Модель на 49 миллиардов параметров, которая оптимизирована для работы на GPU и предназначена для выполнения сложных NLP задач.

Интеграция с экосистемой NVIDIA: Использует фреймворки вроде NeMo и TensorRT для ускорения вычислений на GPU.

Оптимизация под железо NVIDIA: Заточена для работы на серверах с GPU серий A100, H100 и др.

Совместимость с Llama 3: Сохраняет
🛠 Для кого полезен?

Корпоративные разработчики: Внедрение в продукты, требующие высокоточной генерации текста (чат-боты, аналитика).

🚀 Преимущества перед аналогами
Скорость и эффективность:

Благодаря оптимизации под CUDA и TensorRT, модель работает в 1.5–2x быстрее, чем базовые версии Llama 3 на аналогичном железе.

Поддержка квантования и динамического батчинга для снижения затрат на инференс.

Масштабируемость:
Готовность к интеграции в распределенные системы (NVIDIA DGX, Kubernetes).

Совместимость с NVIDIA Triton Inference Server для промышленного развертывания.

Кастомизация:
Возможность дообучения на доменных данных (медицина, юриспруденция, финансы) с использованием NeMo Framework.

https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1

Читать полностью…

Анализ данных (Data analysis)

❓Работаете с данными? Масштабируйте Big Data с Apache Spark!

Освойте Spark на продвинутом уровне. За 4 месяца на онлайн-курсе от Otus вы:
- Освоите RDD, DataFrame, Dataset, Spark API
- Разберётесь в SparkML, потоковой обработке, работе с графами
- Научитесь запускать Spark в Kubernetes и Hadoop

В программе сложные, но интересные практические задачи и проект на реальных данных.

💪 Выпускники работают с биржами, маркетплейсами и банками.

➡️ Пройдите вступительное тестирование и получите скидку на курс: https://otus.pw/wFnu/?erid=2W5zFH7RZnp

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.

Читать полностью…
Subscribe to a channel