Первый журнал о Data Science | Machine Learning | Big Data | Deep Learning | Neural Networks По вопросам сотрудничества: @v2r8n
Тем временем OpenAI закончили раскатывать GPT-4.5 на юзеров Plus подписки (20$)
Теперь можно сэкономить 180 долларов 🤑
⚫️ Разыгрываем 5 книг по обучению с подкреплением!
В честь того, что Эндрю Барто и Ричард Саттон получили премию Тьюринга — самую престижную награду в мире компьютерных наук — мы решили подарить нашим подписчикам 5 экземпляров их легендарной книги «Обучение с подкреплением».
Это главная и самая понятная книга по RL, написанная буквально отцами области. На её 600 страницах — всё, что нужно знать о reinforcement learning: от самых основ до разборов новейших подходов и знаменитых алгоритмов AlphaGo и AlphaZero, которые обыграли чемпионов мира по шахматам и Go.
Чтобы получить одну из пяти книг, просто убедитесь, что вы подписаны на оба наших канала: Data Secrets и Data Secrets Карьера. Результаты мы объявим в пятницу.
Жми "Участвовать" и совсем скоро книга может оказаться именно у тебя
От мидла до тимлида. Звучит как очередная история успеха, но это команда Циан ищет дата-сайентистов разного уровня. А ещё рассказывает:
➡️ как они выявляют проблемы и выдвигают гипотезы;
➡️ как им помогают записи пользовательских сессий;
➡️ над чем работают сейчас.
Их истории и вакансии можно увидеть на странице команды в Teams. Переходите, чтобы познакомиться и подсмотреть за работой в Циан.
Помните бенчмарк ARC AGI? Сегодня вышла статья, в которой его решили на 20% без претрейна
20% – высокий результат. GPT-4o выбивает 5%, o1-mini – 13%, а o1 – около 30. Но самое интересное в этой работе – это заявление «без претрейна».
То есть да, модель вообще не предобучали на задачах из трейна ARC-AGI. Для каждого примера берется новая нетронутая сетка, которая инициализируется случайно и обучается с помощью градиентного спуска исключительно на конкретном тестовом примере во время инференса 😮
Весь подход основан на… компрессии информации. Идея в том, чтобы находить максимально компактное (то есть низкобитное) представление задачи, которое затем при декомпрессии в точности воспроизводит исходный пазл вместе с ответом. Подход назвали CompressARC.
Архитектура похожа на VAE: мы оптимизируем параметры модели и входное распределение с применением относительного энтропийного кодирования (REC) и арифметического кодирования для эффективного сжатия информации. Модель как бы учится находить оптимальное структурное представление задачи, что в итоге и равняется тому, чтобы найти общее правило для решения головоломки.
Гениально и свежо. Интересно, заведется ли что-то подобное на других задачах.
Блогпост | Код
OpenAI подписали мощный контракт с 15 ведущими университетами и выделят им 50 миллионов долларов
Проект называется NextGenAI. Гарвард, Оксфорд, MIT, Калтех, Мичиганский университетов – вот неполный список партнеров. Все они получат от OpenAI гранты на исследования и API.
У многих университетов также будут выделенные группы студентов, которые будут заниматься специальными проектами OpenAI.
Вероятно, конечная цель – плотно подсадить крупное образование на экосистему ChatGPT, как это пытаются делать с Калифорнийским университетом.
openai.com/index/introducing-nextgenai/
Тот самый фронтендер из вашей команды на ML-хакатоне
Читать полностью…⚡️ В Google Colab завезли Data Science агента!
Он создан специально для работы с DS/ML и может создавать не просто фрагменты кода, а целые ноутбуки. Все просто:
1. Нужно подгрузить свои данные
2. Описать цели (например, «визуализируй», «проведи EDA», «напиши и оптимизируй модель предсказания таргета»)
3. Сидеть и наслаждаться тем, как агент сам пишет и запускает ячейки, импортирует нужные библиотеки и совершенствует свой код
Кстати, на бенчмарке DABStep (он как раз оценивает способности анализировать дату) агент занял четвертое место, сразу после o1, o3-mini и Claude, а это довольно мощный уровень.
Доступно для всех юзеров
+1 к сегодняшней подборке ресурсов: HuggingFace только что обновили свой курс по NLP и LLM и добавили туда целую главу про ризонинг. Внутри:
🟦 База по обучению с подкреплением и его роль в LLM
🟦 Подробный разбор самых важных моментов статьи про R1
🟦 Практика: пишем собственный GRPO и сами элайним модель
В конце каждой главы – квиз 👍
Гитхаб | Курс на HF
Что почитать и посмотреть про обучение LLM и ризонинг? Подборка топ-7 ресурсов от нашей редакции, после которых вы точно лучше поймете, как работают и учатся современные модели 🤓
1. Несомненно, трехчасовое видео Андрея Карпаты "Погружение в LLM". Вся теория по основным этапам обучения, архитектуре, файнтюнингу, ризонингу и обучению с подкреплением верхнеуровнего и доступно. Идеально для первого знакомства с теорией по LLM.
2. Видео про трансформеры от 3Blue1Brown. Немного подробнее про внутреннее устройство LLM. Необходимо хотя бы идейно понять архитектуру, чтобы потом разбираться с новейшими техниками, и этот максимально наглядный гайд подойдет идеально. В видео есть русский дубляж.
3. Для тех, кому хочется практики, отличный бесплатный курс от Hugging Face. Классные иллюстрации, понятные примеры, все необходимое для того, чтобы вы могли сами запускать модели.
4. Статья про модель DeepSeekMath от DeepSeek. Да, здесь все еще не про ризонинг, зато очень подробно и понятно описан этап сбора данных, претрен, эксперименты и обучение с подкреплением. Этот текст даст вам крепкую базу для понимания того, как обучают модели в индустрии. Вот, кстати, наш большой разбор этой статьи.
5. У истоков ризонинга: статья про CoT от Google Research. Одна из первых и самых влиятельных работ, в которой обстоятельно обсуждается, что такое цепочки мыслей CoT и как они влияют на качество результатов. Много примеров. Историческая и необходимая база.
6. Cтатья про DeepSeek-R1. Да, эти ребята умеют хорошо писать. Подробно, лаконично, с практической точки зрения. Прочитайте это, и будете понимать ризонинг лучше, чем 99.9% пользователей ChatGPT. Наш разбор.
7. Очень содержательное выступление "Learning to Reason with LLMs" от Ноама Брауна – известного ученого из OpenAI, который работает как раз над ризонингом и агентами. Про игры, масштабирование компьюта и то, как индустрия пришла к моделям, основанным на рассуждениях.
Сохраняйте!
Вышла интересная статья, в которой показали эффективный способ расширения контекстного окна
Продолжается борьба между сторонниками RAG и модельного подхода, в котором контекстное окно пытаются расширить только за счет архитектурных хаков, а не за счет пост-оберток. На эту тему выходит все больше статей. Самая яркая из последних – Infinite Retrieval из Китая.
В этой работе впервые показали способ расширения контекста, который выбивает 100% на бенчмарке «Иголка в стоге сена». Это когда мы вставляем целевое предложение («иглу») в корпус случайных документов («стог сена») и задаем вопрос, на который можно ответить, только используя информацию в «игле».
Раньше некоторые подходы тоже выбивали 100%, НО только на исходном размере контекстного окна модели. А тут взяли малюсенький Qwen2.5-0.5B-Instruct с контекстом 32К, расширили контекст до 1 миллиона (!) и получили результат 100%. Очень круто. Разбираемся, что под капотом 👇
В целом, все построено на привычном подходе кэширования ключей и значений для критически важной информации. Но есть два ключевых отличия:
1. Текст предварительно разбивается на логически завершённые сегменты. Так, чтобы в кэше оставались не отдельные токены, а самые важные законченные мысли
2. Определение значимости сегментов встраивается не поверх, а прямо последним слоем в модель. То есть релевантная информация извлекается прямо во время инференса
Маржинальность DeepSeek составляет 545%. Или нет?
Сегодня внезапно случился шестой, незапланированный, день опенсорса от DeepSeek. Они рассказали о том, как устроен онлайн-инференс моделей DeepSeek-V3/R1 и о том, сколько они зарабатывают на наценке.
Итак, инференс делится на два этапа: Prefilling и Decoding. То есть сначала модель разбивает запрос на токены и формирует эмбеддинги, а затем генерируют выходные токены один за одним. При этом Prefilling легко распараллелить между кучей GPU и проблем тут нет.
А вот с декодингом все сложнее. Тут возникают задержки из-за обмена данными между процессорами и экспертами MoE. Сюда то как раз и встаивают систему DualPipe, о которой мы подробно рассказывали в четвертый день опенсорса DeepSeek. Благодаря ней этапы передачи данных перекрываются вычислениями.
Интересно так же то, что на каждом слое модели при этом доступны аж по 256 экспертов, хотя для одного запроса активируются всего 8. Зачем? Все просто: если один эксперт оказывается перегружен или занят, токены могут быть направлены к другому, что обеспечивает балансировку нагрузки. Плюсом отказоустойчивость и оптимизация вычислений в разных конфигурациях.
А теперь немного экономики.
➖ Сервис работает на H800. За 24 часа пиковая занятость достигала 278 узлов, а средняя – 226.75 узлов. При условии, что каждый узел содержит 8 GPU, ежедневные затраты составляют примерно $87,072.
➖ Всего за сутки обработано 608 миллиардов входных токенов, из которых 56.3% (342 млрд) – это попадания в on-disk KV cache. Сгенерировано 168 миллиардов выходных токенов (средняя скорость генерации – 20–22 токена в секунду)
➖ При стандартном ценообразовании R1, входящие токены оцениваются в $0.14 в кэше или в $0.55 без кэша, а аутпут токены – $2.19 за миллион. То есть общая выручка составляет $562,027, что приводит к маржинальности 545%.
Но это число, конечно, завышено. Во-первых, у DeepSeek-V3 более низкие цены. Во-вторых, в веб-версии все работает бесплатно. В-третьих, даже на API есть ночные скидки.
И тем не менее, с такими оптимизациями и скоростью система остается очень даже экономически эффективной. Очень интересный шеринг от DeepSeek, в общем, таким очень редко кто делится
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
Новое видео от Андрея Карпаты: «Как я использую LLM»
Это большой гайд по тому, как подобрать оптимальный инструмент для ваших задач и при этом сэкономить время и деньги. В программе:
– Как работают экосистемы LLM
– ChatGPT под капотом
– Ценообразование: как не переплачивать
– Ризонеры: когда и как их использовать
– Поиск в интернете, deep research, tool use
– Что такое advanced voice mode
– Claude и его артефакты
– Cursor
– NotebookLM
– Генераторы видео и картинок
– Память в ChatGPT
– И даже кастомные GPTs
По интернету пролетела новость о том, что в следующем квартале Meta планирует выпустить собственный ИИ-чат. Компания будет тестировать подписочную систему и добавлять в чат инструменты: все, как в популярных ChatGPT, Сlaude и тд.
Тем временем реакция Альтмана: "ок, пойду сделаю соцсеть"
Скрин со вчерашнего стрима OpenAI, но не простой
Кто найдет пасхалку? 🐣
✒️ Разбираем тестовое задание в Альфа Банк на позицию Junior Аналитика данных
Чтобы найти работу, мало пройти курс и сделать классное резюме. На практике, чтобы выделиться на собеседовании, нужно понимать, что лежит под капотом каждого инструмента, а не следовать конкретному заученному алгоритму.
Чтобы попрактиковаться в этом, приходите на бесплатный вебинар, где будем разбирать реальное тестовое задание, которое дают аналитикам в Альфа Банке💻
Что будем делать на вебинаре:
🟠 Напишем сложные SQL-запросы для банковских данных;
🟠 Вспомним, как правильно использовать оконные функции;
🟠 Узнаем, как создавать разметку, из чего она состоит и для чего она нужна;
🟠 На реальных данных проведем когортный анализ и сделаем выводы;
🟠 Расскажем, как доставать инсайты из данных.
Вебинар проведет Денис Иванов, ведущий продуктовый аналитик
🏃♀️ Зарегистрироваться на бесплатный вебинар
Вышла QwQ-32B – новая ризонинг модель от Qwen
По качеству она соответствует DeepSeek-R1, а на некоторых тестах даже обходит его. И это при том, что в R1 в 20 раз больше параметров.
И снова: все благодаря мощному скейлингу RL. Согласно блогпосту, обучали в два этапа:
1. RL только для задач математики и кодинга, причем без разметки и традиционной ревард модели. Вместо этого использовали интерпретатора кода и верификатор ответов для математических задач.
2. RL для общих способностей, уже с привычным ревардом и некоторыми rule-based верификаторами. На этом этапе модель училась «нравиться» пользователю и следовать инструкциям.
Исследователи написали, что видят еще много потенциала в RL и продолжат над этим работать. «Возможно, в следующий раз сочетание более сильных предобученных моделей с RL приведет нас к AGI».
Блогпост | Веса
Пообщаться с моделью абсолютно бесплатно уже можно в чате
Премия Тьюринга этого года только что досталась ML-рисерчерам за вклад в обучение с подкреплением
Это самая престижная награда в мире в области информатики, ее часто называют Нобелевской премией Computer Science. В этом году ею наградили легендарных Эндрю Барто и Ричарда Саттона – отцов обучения с подкреплением.
Именно они разработали основы RL в восьмидесятых. Правда, всю мощь подхода оценили только несколько лет назад, когда Google показали AlphaGo. Сегодня RL – неотъемлемая часть ML, и, особенно, наших любимых LLM.
Респект! 🎉
Кажется, скоро нас ждет новая text2image модель от OpenAI
Или она будет внутри GPT-5? 🤔
MIT перезапустили свой легендарный курс 6.S191: Introduction to Deep Learning
NLP, CV, LLM, приложения в медицине: тут все end-to-end, включая теорию и практику с актуальными версиями библиотек.
Подходит курс даже для тех, кто вкатывается с нуля: достаточно уметь брать производные и умножать матрицы, остальное обещают объяснить на ходу.
Лекции будут выходить в свободный доступ на YouTube по понедельникам, первая вышла вчера. Слайды, код и доп.материалы лежат здесь.
Такое не пропускаем
Стали известны некоторые имена сотрудников компании Ильи Суцкевера
SSI была основала еще летом, но до сих пор дистанцируется от СМИ и остается скрытой. Это значит, что ее сотрудники не указывают в соцсетях место работы, и составы команд не афишируются.
Тем не менее, некоторые сведения иногда проскальзывают. Вот некоторые имена:
🔷 Доктор Яир Кармон, старший преподаватель факультета компьютерных наук Тель-Авивского университета с 2020 года. У него три ученых степени по физике, включая докторскую Стэнфорда. Он занимается алгоритмами и оптимизацией.
🔷 Ницан Тор, выпускник Technion и золотой призер трех международных математических олимпиад.
🔷 Шахар Папини, еще один выпускник Technion, олимпиадник и сооснователь блокчейн-компании.
А еще известный Ярон Бродский и около 10 других инженеров и ученых из Google Research (которых Ярон видимо привел). Интересный состав.
Занятно, что SSI вообще не публикуют вакансии, а об эйчарах и речи не идет. Всех нанимают только по личным рекомендациям и сарафанному радио. Кроме того, говорят, в компании нет иерархической структуры, тимлидов и деления на команды: все равны и работают над одним проектом.
К слову, сейчас SSI оценивается уже в 30 миллиардов. Это всего в 5 раз меньше OpenAI и в 2.5 раза меньше xAI.
Исследователь Юрген Шмидхубер заявил крестному отцу ИИ Джеффри Хинтону, что его надо лишить всех наград за плагиат
Шмидхубер уже стал мемом в ML-сообществе за свои бесконечные выпады о том, что у него украли какую-то выдающуюся идею, но все не останавливается. Из последних заявлений этой легенды:
– Хопфилд и Хинтон получили Нобелевскую премию незаслуженно, потому что украли идею из статьи шестидесятых годов
– Все, что сделали DeepSeek с R1, взято из статей Шмидхубера
– GAN – тоже его идея, а авторы основополагающей статьи про эту архитектуру наглые копирайтеры
– Ну и добивочка: трансформеры, естественно, придумал он, а не ребята из Google
Хинтон, кстати, заявление даже никак не прокомментировал.
Бесконечно можно смотреть на три вещи: как горит огонь, как течет вода, и как все воруют у Шмидхубера
Я нифига не понимаю в собственном коде
Я занимаюсь вайб-кодингом
GPT-4.5 нужна в основном для следующей thinking модели
По итогу нескольких дней тестирования можно сказать, что новая GPT-4.5, пожалуй, самая неоднозначная модель OpenAI на сегодняшний день. Она много чего знает, но плоха в точных задачах по сравнению с ризонерами, а еще чрезвычайно дорого стоит. Если в чате с ней поговорить прикольно, то в API сценариев, при которых ее стоило бы использовать, почти нет.
Единственная надежда: GPT-4.5 пригодится OpenAI для следующего поколения ризонеров. Также, как V3 послужила базой для R1 и, предположительно, 4o — для o1, GPT-4.5 может стать отправной точкой для o3/o4/GPT-5. И если скачок будет такой же, как у o1 относительно 4o, то эта модель насытит очень многие сложные бенчмарки.
Но есть нюанс: цена. Цены на o1 больше цен на 4o в 6 раз. А GPT-4.5 уже сама по себе конски дорогая, куда уж еще больше? Даже если получится немного снизить цены, как это вышло с o3-mini (она в два раза дешевле 4o), все равно в сухом остатке мы получаем довольно недоступный ИИ.
Будем надеяться, у OpenAI есть туз в рукаве
Парень создал тулзу для прохождения собеседований, прошел с помощью нее в Amazon, а теперь его могут отчислить из университета
Разработчика зовут Чунгин Ли. Сейчас он учится в Колумбийском университете и работает над ИИ-приложением InterviewCoder для прохождения технических интервью. Ежемесячный доход стартапа уже составляет 30 тысяч долларов, а он запустился всего месяц назад.
Так вот около недели назад Чунгин решил испытать свое детище в поле, пошел вместе с InterviewCoder проходить собеседование в Amazon и в итоге «с блеском» получил офер.
Об успехе приложения он радостно рассказал в твиттере, опубликовал на ютубе запись собеса и получил кучу просмотров и пользователей (кстати, работать в Amazon он на самом деле не собирался).
В Amazon тоже увидели твиты парня и, когда поняли, что их «обманули», видимо сильно обиделись. Они написали гневное письмо ему, а затем и в его университет с просьбой «принять меры» в отношении и студента, и приложения, которое он продает. Теперь Чунгина могут отчислить.
Сам он, кстати, прокомментировал письмо так: «Лол, не задавайте тупых вопросов на собеседованиях, и люди не будут пользоваться такими штуками»
Парня жалко, конечно, но если это не лучшая реклама, то что? www.interviewcoder.co/
Наши друзья из ecom.tech запустили видео-подкаст “AI в действии”. В нем они говорят о свежих новостях в мире DS, о трендах и о том, как наука может найти свое применение в бизнесе.
Ведущий подкаста — Петр Лукьянченко, руководитель ML-департамента в eсom.teсh.
Уже опубликовали два эпизода: в первом гостем был Алексей Масютин, руководитель Центра Искусственного интеллекта НИУ ВШЭ. Порассуждали о том, как сегодня начинать свой путь в data science, что представляет из себя DS в крупных IT-компаниях и даже успели немного погрузиться в специфику разработки и развития мультимодальных архитектур.
Гостем второго выпуска стал Юрий Дорн, руководитель программы AI Masters в Институте ИИ МГУ.
В этой части говорили о том, где заканчивается теория и начинается практика в DS. Когда нужно перестать читать книги и начать писать код? Что нужно знать, чтобы быть классным специалистом? А может быть, теория переоценена и нужно сразу идти соревноваться на kaggle? Постарались сформулировать набор советов для тех, кто думает, с какой стороны подступиться к изучению Data Science и как правильно найти учебный материал, подходящий под конкретную ситуацию.
Первый эпизод:
🙂 Смотреть
🙂 Слушать
Второй эпизод:
🙂 Смотреть
🙂 Слушать
Реклама. ООО «Умное пространство», ИНН: 7811554010. Ерид: 2W5zFJ36FGU
Ух ты: сегодня на первом месте в топе paper of the day на Hugging Face статья от Sber AI и AIRI
Она посвящена новой и первой опенсорсной (!) модели переноса головы с картинки на картинку GHOST 2.0.
Задача похожа на face swap, но немного сложнее: тут нужно адаптировать голову под всю сцену, следить за цветом кожи, контрастом и другими характеристиками. В то же время, решения получаются практичнее. Например, в отличие от face swap, ничего не ломается, если форма лиц source (откуда переносим) и target (куда переносим) разная.
Архитектура GHOST 2.0 похожа на единственное существовавшее до этого момента решение – модель HeSer (Head Swapper), из которой позаимствовали идею двух основных модулей.
1. Aligner – модуль, реконструирующий голову для вставки в таргет. В основе подобие StyleGAN, входной эмбеддинг для которого генерируют три энкодера. Первые два считывают лицо, прическу и другие детали с source изображения. Последний – позу и выражение лица с target изображения, и меняли относительно HeSer именно его.
В старом решении один из энкондеров был избыточен, обучался с ликами и сильно все портил. Пришлось корректировать и архитектуру, и лосс, и датасет, и процесс трейна. На этом этапе уже виден огромный прогресс по сравнению с HeSer (см. картинку 1).
2. Blender – вставка головы в target фон. В оригинале здесь работала связка извлечения цветного референса для раскраски + сама зашивающая в таргет все маски и изображения модель UNet. Однако оказалось, что генератор цвета провоцирует появления серых областей, а из-за UNet вокруг головы образуется белое пространство.
Поэтому в архитектуре заменили принцип работы и того, и другого. Color Creator теперь сам заполняет все серые области на основе общих оттенков изображения, а в UNet добавили механизм экстраполяции маски, который как бы накладывает фон еще раз поверх вставки головы. При этом, чтобы вырезанных областей от маски не оставалось, картинки еще и постобрабатывали с помощью Kandinsky 2.2. Он с помощью простого запроса качественно закрашивал серость без необходимости файнтюнинга.
Результат – на лицо голову. Метрики подросли, да и на глаз качество результатов сильно приятнее предыдущих алгоритмов.
🔥 Страница проекта | Хабр | Статья | Демо
CTO социальных платформ VK Сергей Ляджин в подкасте рассуждал о AI-технологиях в продуктах компании и технологических вызовах, которые в целом нас ожидают.
Это интересно: он говорил не только про улучшение пользовательских сценариев, но и создание новых, которых еще нет. AI меняет нас, мы меняем AI, и каждый раз появляется что-то новое.
Полный выпуск смотрите здесь.
Пятый и последний день опенсорса от DeepSeek (будем скучать)
Сегодня у нас целая файловая система 3FS (Fire-Flyer File System). Она глобально оптимизирует работу с данными и в обучении, и в инференсе. То есть позволяет:
🔵 Быстро загружать и сохранять данные для обучения модели
🔵 Мгновенно получать доступ к нужным частям данных, что очень важно для инференса
🔵 Сокращать повторные вычисления и увеличивать скорость работы
Внутри – умная параллельная сортировка, цепочная репликация, KVCache, параллельный чекпоинтинг и другие хаки, особенно актуальные именно для ML-систем. В общем, достаточно масштабно.
В тестах на чтения вся эта красота достигает пропускной способности 6.6 ТиБ/с на 180 узлах: github.com/deepseek-ai/3FS
У OpenAI закончились графические процессоры 😢
По крайней мере, так говорит Сэм Альтман. Вчера после выпуска GPT-4.5 он написал в X:
Это гигантская дорогая модель. Мы действительно хотели выпустить ее в версиях Plus и Pro одновременно, но мы сильно выросли, и у нас закончились GPU. На следующей неделе мы добавим десятки тысяч GPU и выпустим ее в Plus. (Скоро их будет сотни тысяч, и я почти уверен, что вы будете использовать все)