datasciencefun | Unsorted

Telegram-канал datasciencefun - Data Science & Machine Learning

50007

Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free For collaborations: @Guideishere12 Buy ads: https://telega.io/c/datasciencefun

Subscribe to a channel

Data Science & Machine Learning

Three different learning styles in machine learning algorithms:

1. Supervised Learning

Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.

A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.

Example problems are classification and regression.

Example algorithms include: Logistic Regression and the Back Propagation Neural Network.

2. Unsupervised Learning

Input data is not labeled and does not have a known result.

A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.

Example problems are clustering, dimensionality reduction and association rule learning.

Example algorithms include: the Apriori algorithm and K-Means.

3. Semi-Supervised Learning

Input data is a mixture of labeled and unlabelled examples.

There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.

Example problems are classification and regression.

Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.

Читать полностью…

Data Science & Machine Learning

Complete roadmap to learn data science in 2024 👇👇

1. Learn the Basics:
- Brush up on your mathematics, especially statistics.
- Familiarize yourself with programming languages like Python or R.
- Understand basic concepts in databases and data manipulation.

2. Programming Proficiency:
- Develop strong programming skills, particularly in Python or R.
- Learn data manipulation libraries (e.g., Pandas) and visualization tools (e.g., Matplotlib, Seaborn).

3. Statistics and Mathematics:
- Deepen your understanding of statistical concepts.
- Explore linear algebra and calculus, especially for machine learning.

4. Data Exploration and Preprocessing:
- Practice exploratory data analysis (EDA) techniques.
- Learn how to handle missing data and outliers.

5. Machine Learning Fundamentals:
- Understand basic machine learning algorithms (e.g., linear regression, decision trees).
- Learn how to evaluate model performance.

6. Advanced Machine Learning:
- Dive into more complex algorithms (e.g., SVM, neural networks).
- Explore ensemble methods and deep learning.

7. Big Data Technologies:
- Familiarize yourself with big data tools like Apache Hadoop and Spark.
- Learn distributed computing concepts.

8. Feature Engineering and Selection:
- Master techniques for creating and selecting relevant features in your data.

9. Model Deployment:
- Understand how to deploy machine learning models to production.
- Explore containerization and cloud services.

10. Version Control and Collaboration:
- Use version control systems like Git.
- Collaborate with others using platforms like GitHub.

11. Stay Updated:
- Keep up with the latest developments in data science and machine learning.
- Participate in online communities, read research papers, and attend conferences.

12. Build a Portfolio:
- Showcase your projects on platforms like GitHub.
- Develop a portfolio demonstrating your skills and expertise.

Best Resources to learn Data Science

Intro to Data Analytics by Udacity

Machine Learning course by Google

Machine Learning with Python

Data Science Interview Questions

Data Science Project ideas

Data Science: Linear Regression Course by Harvard

Machine Learning Interview Questions

Free Datasets for Projects

Please give us credits while sharing: -> /channel/free4unow_backup

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Essential Topics to Master Data Science Interviews: 🚀

SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some ❤️ if you're ready to elevate your data science journey! 📊

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Common Machine Learning Algorithms!

1️⃣ Linear Regression
->Used for predicting continuous values.
->Models the relationship between dependent and independent variables by fitting a linear equation.

2️⃣ Logistic Regression
->Ideal for binary classification problems.
->Estimates the probability that an instance belongs to a particular class.

3️⃣ Decision Trees
->Splits data into subsets based on the value of input features.
->Easy to visualize and interpret but can be prone to overfitting.

4️⃣ Random Forest
->An ensemble method using multiple decision trees.
->Reduces overfitting and improves accuracy by averaging multiple trees.

5️⃣ Support Vector Machines (SVM)
->Finds the hyperplane that best separates different classes.
->Effective in high-dimensional spaces and for classification tasks.

6️⃣ k-Nearest Neighbors (k-NN)
->Classifies data based on the majority class among the k-nearest neighbors.
->Simple and intuitive but can be computationally intensive.

7️⃣ K-Means Clustering
->Partitions data into k clusters based on feature similarity.
->Useful for market segmentation, image compression, and more.

8️⃣ Naive Bayes
->Based on Bayes' theorem with an assumption of independence among predictors.
->Particularly useful for text classification and spam filtering.

9️⃣ Neural Networks
->Mimic the human brain to identify patterns in data.
->Power deep learning applications, from image recognition to natural language processing.

🔟 Gradient Boosting Machines (GBM)
->Combines weak learners to create a strong predictive model.
->Used in various applications like ranking, classification, and regression.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Are you looking to become a machine learning engineer? 🤖
The algorithm brought you to the right place! 🚀

I created a free and comprehensive roadmap. Let’s go through this thread and explore what you need to know to become an expert machine learning engineer:

📚 Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Here’s what you need to focus on:

- Basic probability concepts 🎲
- Inferential statistics 📊
- Regression analysis 📈
- Experimental design & A/B testing 🔍
- Bayesian statistics 🔢
- Calculus 🧮
- Linear algebra 🔠

🐍 Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

- Variables, data types, and basic operations ✏️
- Control flow statements (e.g., if-else, loops) 🔄
- Functions and modules 🔧
- Error handling and exceptions ❌
- Basic data structures (e.g., lists, dictionaries, tuples) 🗂️
- Object-oriented programming concepts 🧱
- Basic work with APIs 🌐
- Detailed data structures and algorithmic thinking 🧠

🧪 Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas 🔍
- Data visualization techniques to visualize variables 📉
- Feature extraction & engineering 🛠️
- Encoding data (different types) 🔐

⚙️ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:

- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees 📊
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering 🧠
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients 🕹️

Solve two types of problems:
- Regression 📈
- Classification 🧩

🧠 Neural Networks
Neural networks are like computer brains that learn from examples 🧠, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops 🔄
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns 🖼️
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series 📚

In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.

🕸️ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.

- CNNs 🖼️
- RNNs 📝
- LSTMs

🚀 Machine Learning Project Deployment

Machine learning engineers should dive into MLOps and project deployment.

Here are the must-have skills:

- Version Control for Data and Models 🗃️
- Automated Testing and Continuous Integration (CI) 🔄
- Continuous Delivery and Deployment (CD) 🚚
- Monitoring and Logging 🖥️
- Experiment Tracking and Management 🧪
- Feature Stores 🗂️
- Data Pipeline and Workflow Orchestration 🛠️
- Infrastructure as Code (IaC) 🏗️
- Model Serving and APIs 🌐

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Statistics Interview Q&A Part-2

Читать полностью…

Data Science & Machine Learning

K-Means Clustering

Читать полностью…

Data Science & Machine Learning

K-Nearest Neighbours

Читать полностью…

Data Science & Machine Learning

Amazon Interview Process for Data Scientist position

📍Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.

After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).

📍 𝗥𝗼𝘂𝗻𝗱 𝟮- 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗕𝗿𝗲𝗮𝗱𝘁𝗵:
In this round the interviewer tested my knowledge on different kinds of topics.

📍𝗥𝗼𝘂𝗻𝗱 𝟯- 𝗗𝗲𝗽𝘁𝗵 𝗥𝗼𝘂𝗻𝗱:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.

📍𝗥𝗼𝘂𝗻𝗱 𝟰- 𝗖𝗼𝗱𝗶𝗻𝗴 𝗥𝗼𝘂𝗻𝗱-
This was a Python coding round, which I cleared successfully.

📍𝗥𝗼𝘂𝗻𝗱 𝟱- This was 𝗛𝗶𝗿𝗶𝗻𝗴 𝗠𝗮𝗻𝗮𝗴𝗲𝗿 where my fitment for the team got assessed.

📍𝗟𝗮𝘀𝘁 𝗥𝗼𝘂𝗻𝗱- 𝗕𝗮𝗿 𝗥𝗮𝗶𝘀𝗲𝗿- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.

So, here are my Tips if you’re targeting any Data Science role:
-> Never make up stuff & don’t lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

You're an upcoming data scientist?
This is for you.

The key to success isn't hoarding every tutorial and course.
It's about taking that first, decisive step.
Start small. Start now.

I remember feeling paralyzed by options:
Coursera, Udacity, bootcamps, blogs...
Where to begin?

Then my mentor gave me one piece of advice:

"Stop planning. Start doing.
Pick the shortest video you can find.
Watch it. Now."

It was tough love, but it worked.

I chose a 3-minute intro to pandas.
Then a quick matplotlib demo.
Suddenly, I was building momentum.

Each bite-sized lesson built my confidence.
Every "I did it!" moment sparked joy.
I was no longer overwhelmed—I was excited.

So here's my advice for you:

1. Find a 5-minute data science video. Any topic.
2. Watch it before you finish your coffee.
3. Do one thing you learned. Anything.

Remember:
A messy start beats a perfect plan
Every. Single. Time.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

🎯 Top Statistics Interview Questions and Answers for Data Science Jobs! 📊

Are you preparing for data science interviews?
Statistics is a critical part of the process, and here are some of the most asked interview questions along with simple answers to help you ace your next interview! 💡

1. What is the difference between population and sample?
Population: The entire group you're interested in studying.
Sample: A smaller subset of the population used for analysis.

2. What is p-value, and why is it important?
P-value is the probability that the observed data could occur by chance under the null hypothesis. A low p-value (typically < 0.05) means you can reject the null hypothesis.

3. What is the Central Limit Theorem (CLT)?
CLT states that, regardless of the population distribution, the sampling distribution of the sample mean approaches a normal distribution as the sample size increases.

4. What is the difference between correlation and causation?
Correlation: A relationship or association between two variables.
Causation: One variable directly affects or causes a change in another.

5. What are Type I and Type II errors?
Type I Error: Rejecting the null hypothesis when it’s actually true (false positive).
Type II Error: Failing to reject the null hypothesis when it’s false (false negative).

6. What is multicollinearity, and how do you detect it?
Multicollinearity: Occurs when independent variables in a regression model are highly correlated. You can detect it using Variance Inflation Factor (VIF) or by checking correlation matrices.

7. What is A/B testing, and how is it applied?
A/B testing is a hypothesis testing method used to compare two versions (A and B) to determine which one performs better. It's widely used in marketing and UX/UI design.

8. What is heteroscedasticity?
Heteroscedasticity occurs when the variance of the residuals in a regression model is not constant across all levels of an independent variable. It can be detected through residual plots.

9. What is the difference between parametric and non-parametric tests?
Parametric tests assume the data follows a specific distribution (e.g., t-test, ANOVA).
Non-parametric tests don’t assume any particular distribution (e.g., Mann-Whitney U test, Kruskal-Wallis test).

10. Explain bias and variance in the context of machine learning models.
Bias: Error introduced by oversimplifying the model (high bias leads to underfitting).
Variance: Error from the model being too sensitive to small fluctuations in the training data (high variance leads to overfitting).

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

Machine Learning Study Plan: 2024

|-- Week 1: Introduction to Machine Learning
| |-- ML Fundamentals
| | |-- What is ML?
| | |-- Types of ML
| | |-- Supervised vs. Unsupervised Learning
| |-- Setting up for ML
| | |-- Python and Libraries
| | |-- Jupyter Notebooks
| | |-- Datasets
| |-- First ML Project
| | |-- Linear Regression
|
|-- Week 2: Intermediate ML Concepts
| |-- Classification Algorithms
| | |-- Logistic Regression
| | |-- Decision Trees
| |-- Model Evaluation
| | |-- Accuracy, Precision, Recall, F1 Score
| | |-- Confusion Matrix
| |-- Clustering
| | |-- K-Means
| | |-- Hierarchical Clustering
|
|-- Week 3: Advanced ML Techniques
| |-- Ensemble Methods
| | |-- Random Forest
| | |-- Gradient Boosting
| | |-- Bagging and Boosting
| |-- Dimensionality Reduction
| | |-- PCA
| | |-- t-SNE
| | |-- Autoencoders
| |-- SVM
| | |-- SVM
| | |-- Kernel Methods
|
|-- Week 4: Deep Learning
| |-- Neural Networks
| | |-- Introduction
| | |-- Activation Functions
| |-- (CNN)
| | |-- Image Classification
| | |-- Object Detection
| | |-- Transfer Learning
| |-- (RNN)
| | |-- Time Series
| | |-- NLP
|
|-- Week 5-8: Specialized ML Topics
| |-- Reinforcement Learning
| | |-- Markov Decision Processes (MDP)
| | |-- Q-Learning
| | |-- Policy Gradient
| | |-- Deep Reinforcement Learning
| |-- NLP and Text Analysis
| | |-- Text Preprocessing
| | |-- Named Entity Recognition
| | |-- Text Classification
| |-- Computer Vision
| | |-- Image Processing
| | |-- Object Detection
| | |-- Image Generation
| | |-- Style Transfer
|
|-- Week 9-11: Real-world App and Projects
| |-- Capstone Project
| | |-- Data Collection
| | |-- Model Building
| | |-- Evaluation and Optimization
| | |-- Presentation
| |-- Kaggle Competitions
| | |-- Data Science Community
| |-- Industry-based Projects
|
|-- Week 12: Post-Project Learning
| |-- Model Deployment
| | |-- Docker
| | |-- Cloud Platforms (AWS, GCP, Azure)
| |-- MLOps
| | |-- Model Monitoring
| | |-- Model Version Control
| |-- Continuing Education
| | |-- Advanced Topics
| | |-- Research Papers
| | |-- New Dev
|
|-- Resources and Community
| |-- Online Courses (Coursera, 365datascience)
| |-- Books (ISLR, Introduction to ML with Python)
| |-- Data Science Blogs and Podcasts
| |-- GitHub Repo
| |-- Data Science Communities (Kaggle)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

5 Machine Learning Algorithms for Beginners:

1. Linear Regression

It models the relationship between a dependent variable and one or more independent variables by fitting a linear equation to the observed data.

Tip: Use Linear Regression for predicting continuous outcomes like house prices, sales forecasts, or salaries.

Example: from sklearn.linear_model import LinearRegression;
model = LinearRegression().fit(X_train, y_train)

2. Logistic Regression

Logistic Regression is used for binary classification problems, not regression. It predicts the probability that an input belongs to a particular class.

Tip: Ideal for binary outcomes like spam detection, customer churn prediction, or disease diagnosis.

Example: from sklearn.linear_model import LogisticRegression;

model = LogisticRegression().fit(X_train, y_train)

3. Decision Trees

Models that split the data into branches based on feature values, leading to a decision or prediction.

Tip: Great for classification problems with clear decision rules. They can also be used for regression.

Example:
from sklearn.tree import DecisionTreeClassifier;

model = DecisionTreeClassifier().fit(X_train, y_train)

4. K-Nearest Neighbors (KNN)

KNN is a non-parametric algorithm that classifies a data point based on the majority class among its k-nearest neighbors in the feature space.

Tip: Use KNN for simple classification problems like image recognition or recommendation systems.

Example:
from sklearn.neighbors import KNeighborsClassifier;
model = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)

5. K-Means Clustering

K-Means is an unsupervised learning algorithm that groups data into k clusters based on feature similarity. It's useful for finding patterns or segments in the data.

Tip: Ideal for market segmentation, customer grouping, or image compression tasks.

Example:
from sklearn.cluster import KMeans;
model = KMeans(n_clusters=3).fit(X_train)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

Lasso, Ridge, and Elastic Net are three popular regularization techniques used in linear regression models to prevent overfitting by penalizing the size of the coefficients. Here's a comparison of the three:

1. Ridge Regression (L2 Regularization)
- Penalty: Adds a penalty equal to the sum of the squared coefficients multiplied by a regularization parameter (λ). The penalty term is \( \lambda \sum_{j=1}^{p} \beta_j^2 \).
- Effect: Shrinks the coefficients towards zero, but does not set any of them exactly to zero. This means all features are retained, though with smaller coefficients.
- Use Case: Best suited when all the predictors are potentially useful but need to be regularized.

2. Lasso Regression (L1 Regularization)
- Penalty: Adds a penalty equal to the sum of the absolute values of the coefficients multiplied by a regularization parameter (λ). The penalty term is \( \lambda \sum_{j=1}^{p} |\beta_j| \).
- Effect: Can shrink some coefficients to exactly zero, effectively performing feature selection by excluding some variables from the model.
- Use Case: Ideal when you expect that only a subset of the features are important, as it can reduce the model complexity by removing irrelevant features.

3. Elastic Net Regression
- Penalty: Combines both L1 and L2 regularization terms, with a mixing parameter (α) that controls the relative contributions of Lasso and Ridge. The penalty term is \( \lambda \left( \alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} \beta_j^2 \right) \).
- Effect: Provides a balance between Lasso and Ridge. It can set some coefficients to zero (like Lasso) and shrink the others (like Ridge).
- Use Case: Useful when there are multiple correlated features, as it can perform well in situations where neither Lasso nor Ridge alone would be ideal.

### Key Differences:
- Ridge is used when you have many small/medium-sized coefficients and want to keep all features.
- Lasso is preferred when you believe that only a few features are important, as it can automatically perform feature selection.
- Elastic Net is a middle ground that can handle both situations and is particularly useful when there is multicollinearity among the predictors.

Читать полностью…

Data Science & Machine Learning

Many people reached out to me saying telegram may get banned in their countries. So I've decided to create WhatsApp channels based on your interests 👇👇

Free Courses with Certificate: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g

Jobs & Internship Opportunities:
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Web Development: https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z

Python Free Books & Projects: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Java Resources: https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s

Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X

SQL: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Programming Free Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

Data Science Projects: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Learn Data Science & Machine Learning: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Don’t worry Guys your contact number will stay hidden!

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Top 10 important data science concepts

1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.

2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.

3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.

4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.

5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.

6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.

7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.

8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.

9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.

10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

One day or Day one. You decide.

Data Science edition.

𝗢𝗻𝗲 𝗗𝗮𝘆 : I will learn SQL.
𝗗𝗮𝘆 𝗢𝗻𝗲: Download mySQL Workbench.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will build my projects for my portfolio.
𝗗𝗮𝘆 𝗢𝗻𝗲: Look on Kaggle for a dataset to work on.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will master statistics.
𝗗𝗮𝘆 𝗢𝗻𝗲: Start the free Khan Academy Statistics and Probability course.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will learn to tell stories with data.
𝗗𝗮𝘆 𝗢𝗻𝗲: Install Tableau Public and create my first chart.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will become a Data Scientist.
𝗗𝗮𝘆 𝗢𝗻𝗲: Update my resume and apply to some Data Science job postings.

Читать полностью…

Data Science & Machine Learning

Many people pay too much to learn Data Science, but my mission is to break down barriers. I have shared complete learning series to learn Data Science algorithms from scratch.

Here are the links to the Data Science series 👇👇

Complete Data Science Algorithms: /channel/datasciencefun/1708

Part-1: /channel/datasciencefun/1710

Part-2: /channel/datasciencefun/1716

Part-3: /channel/datasciencefun/1718

Part-4: /channel/datasciencefun/1719

Part-5: /channel/datasciencefun/1723

Part-6: /channel/datasciencefun/1724

Part-7: /channel/datasciencefun/1725

Part-8: /channel/datasciencefun/1726

Part-9: /channel/datasciencefun/1729

Part-10: /channel/datasciencefun/1730

Part-11: /channel/datasciencefun/1733

Part-12:
/channel/datasciencefun/1734

Part-13: /channel/datasciencefun/1739

Part-14: /channel/datasciencefun/1742

Part-15: /channel/datasciencefun/1748

Part-16: /channel/datasciencefun/1750

Part-17: /channel/datasciencefun/1753

Part-18: /channel/datasciencefun/1754

Part-19: /channel/datasciencefun/1759

Part-20: /channel/datasciencefun/1765

Part-21: /channel/datasciencefun/1768

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)

Читать полностью…

Data Science & Machine Learning

Coding and Aptitude Round before interview

Coding challenges are meant to test your coding skills (especially if you are applying for ML engineer role). The coding challenges can contain algorithm and data structures problems of varying difficulty. These challenges will be timed based on how complicated the questions are. These are intended to test your basic algorithmic thinking.
Sometimes, a complicated data science question like making predictions based on twitter data are also given. These challenges are hosted on HackerRank, HackerEarth, CoderByte etc. In addition, you may even be asked multiple-choice questions on the fundamentals of data science and statistics. This round is meant to be a filtering round where candidates whose fundamentals are little shaky are eliminated. These rounds are typically conducted without any manual intervention, so it is important to be well prepared for this round.

Sometimes a separate Aptitude test is conducted or along with the technical round an aptitude test is also conducted to assess your aptitude skills. A Data Scientist is expected to have a good aptitude as this field is continuously evolving and a Data Scientist encounters new challenges every day. If you have appeared for GMAT / GRE or CAT, this should be easy for you.

Resources for Prep:

For algorithms and data structures prep,Leetcode and Hackerrank are good resources.

For aptitude prep, you can refer to IndiaBixand Practice Aptitude.

With respect to data science challenges, practice well on GLabs and Kaggle.

Brilliant is an excellent resource for tricky math and statistics questions.

For practising SQL, SQL Zoo and Mode Analytics are good resources that allow you to solve the exercises in the browser itself.

Things to Note:

Ensure that you are calm and relaxed before you attempt to answer the challenge. Read through all the questions before you start attempting the same. Let your mind go into problem-solving mode before your fingers do!

In case, you are finished with the test before time, recheck your answers and then submit.

Sometimes these rounds don’t go your way, you might have had a brain fade, it was not your day etc. Don’t worry! Shake if off for there is always a next time and this is not the end of the world.

Читать полностью…

Data Science & Machine Learning

Neural Networks and Deep Learning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:

1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.

Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.

Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.

2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.

These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.

Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.

3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.

Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.

4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.

Advancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.

5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.

Join for more: /channel/machinelearning_deeplearning

Читать полностью…

Data Science & Machine Learning

Like if you want Part-2 👍

Читать полностью…

Data Science & Machine Learning

Naive Bayes

Читать полностью…

Data Science & Machine Learning

Stop learning data science. Start doing this instead.

Here are 5 practical projects that teach more:

- Predict customer churn for a business
- Create a recommendation system for movies
- Analyse social media sentiment for a brand
- Predict house prices in your area
- Build a fraud detection system

Real-world experience is invaluable.

These projects force you to:
• Clean messy data
• Apply algorithms to solve problems
• Build end-to-end solutions

Don't just learn. Do.

Start small. Learn as you go. Embrace the challenges.

Real projects teach more than courses ever will.

Читать полностью…

Data Science & Machine Learning

/channel/datasciencej

Читать полностью…

Data Science & Machine Learning

Complete Machine Learning Roadmap
👇👇

1. Introduction to Machine Learning
   - Definition
   - Purpose
   - Types of Machine Learning (Supervised, Unsupervised, Reinforcement)

2. Mathematics for Machine Learning
   - Linear Algebra
   - Calculus
   - Statistics and Probability

3. Programming Languages for ML
   - Python and Libraries (NumPy, Pandas, Matplotlib)
   - R

4. Data Preprocessing
   - Handling Missing Data
   - Feature Scaling
   - Data Transformation

5. Exploratory Data Analysis (EDA)
   - Data Visualization
   - Descriptive Statistics

6. Supervised Learning
   - Regression
   - Classification
   - Model Evaluation

7. Unsupervised Learning
   - Clustering (K-Means, Hierarchical)
   - Dimensionality Reduction (PCA)

8. Model Selection and Evaluation
   - Cross-Validation
   - Hyperparameter Tuning
   - Evaluation Metrics (Precision, Recall, F1 Score)

9. Ensemble Learning
   - Random Forest
   - Gradient Boosting

10. Neural Networks and Deep Learning
    - Introduction to Neural Networks
    - Building and Training Neural Networks
    - Convolutional Neural Networks (CNN)
    - Recurrent Neural Networks (RNN)

11. Natural Language Processing (NLP)
    - Text Preprocessing
    - Sentiment Analysis
    - Named Entity Recognition (NER)

12. Reinforcement Learning
    - Basics
    - Markov Decision Processes
    - Q-Learning

13. Machine Learning Frameworks
    - TensorFlow
    - PyTorch
    - Scikit-Learn

14. Deployment of ML Models
    - Flask for Web Deployment
    - Docker and Kubernetes

15. Ethical and Responsible AI
    - Bias and Fairness
    - Ethical Considerations

16. Machine Learning in Production
    - Model Monitoring
    - Continuous Integration/Continuous Deployment (CI/CD)

17. Real-world Projects and Case Studies

18. Machine Learning Resources
    - Online Courses
    - Books
    - Blogs and Journals

📚 Learning Resources for Machine Learning:
   - Python for Machine Learning
   - Fast.ai: Practical Deep Learning for Coders
   - Intro to Machine Learning

📚 Books:
   - Machine Learning Interviews
   - Machine Learning for Absolute Beginners

📚 Join @free4unow_backup for more free resources.

ENJOY LEARNING! 👍👍

Читать полностью…

Data Science & Machine Learning

Here are some essential machine learning algorithms that every data scientist should know:

* Linear Regression:  This is a supervised learning algorithm that is used for continuous target variables. It finds a linear relationship between a dependent variable (y) and one or more independent variables (X). It's widely used for tasks like predicting house prices or stock prices.
* Logistic Regression: This is another supervised learning algorithm that is used for binary classification problems. It predicts the probability of an event happening based on independent variables. It's commonly used for tasks like spam email detection or credit card fraud detection.
* Decision Tree: This is a supervised learning algorithm that uses a tree-like model to classify data. It breaks down a decision into a series of smaller and simpler decisions. Decision trees are easily interpretable, making them a good choice for understanding how a model makes predictions.
* Support Vector Machine (SVM): This is a supervised learning algorithm that can be used for both classification and regression tasks. It finds a hyperplane that best separates the data points into different categories. SVMs are known for their good performance on high-dimensional data.
* K-Nearest Neighbors (KNN): This is a supervised learning algorithm that classifies data points based on the labels of their nearest neighbors. The number of neighbors (k) is a parameter that can be tuned to improve the performance of the algorithm. KNN is a simple and easy-to-understand algorithm, but it can be computationally expensive for large datasets.
* Random Forest: This is a supervised learning algorithm that is an ensemble of decision trees. Random forests are often more accurate and robust than single decision trees. They are also less prone to overfitting.
* Naive Bayes: This is a supervised learning algorithm that is based on Bayes' theorem. It assumes that the features are independent of each other, which is often not the case in real-world data. However, Naive Bayes can be a good choice for tasks where the features are indeed independent or when the computational cost is a major concern.
* K-Means Clustering: This is an unsupervised learning algorithm that is used to group data points into k clusters. The k clusters are chosen to minimize the within-cluster sum of squares (WCSS). K-means clustering is a simple and efficient algorithm, but it is sensitive to the initialization of the cluster centers.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Complete Roadmap to learn Data Science

1. Foundational Knowledge

Mathematics and Statistics

- Linear Algebra: Understand vectors, matrices, and tensor operations.
- Calculus: Learn about derivatives, integrals, and optimization techniques.
- Probability: Study probability distributions, Bayes' theorem, and expected values.
- Statistics: Focus on descriptive statistics, hypothesis testing, regression, and statistical significance.

Programming

- Python: Start with basic syntax, data structures, and OOP concepts. Libraries to learn: NumPy, pandas, matplotlib, seaborn.
- R: Get familiar with basic syntax and data manipulation (optional but useful).
- SQL: Understand database querying, joins, aggregations, and subqueries.

2. Core Data Science Concepts

Data Wrangling and Preprocessing

- Cleaning and preparing data for analysis.
- Handling missing data, outliers, and inconsistencies.
- Feature engineering and selection.

Data Visualization

- Tools: Matplotlib, seaborn, Plotly.
- Concepts: Types of plots, storytelling with data, interactive visualizations.

Machine Learning

- Supervised Learning: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-nearest neighbors.
- Unsupervised Learning: K-means clustering, hierarchical clustering, PCA.
- Advanced Techniques: Ensemble methods, gradient boosting (XGBoost, LightGBM), neural networks.
- Model Evaluation: Train-test split, cross-validation, confusion matrix, ROC-AUC.


3. Advanced Topics

Deep Learning

- Frameworks: TensorFlow, Keras, PyTorch.
- Concepts: Neural networks, CNNs, RNNs, LSTMs, GANs.

Natural Language Processing (NLP)

- Basics: Text preprocessing, tokenization, stemming, lemmatization.
- Advanced: Sentiment analysis, topic modeling, word embeddings (Word2Vec, GloVe), transformers (BERT, GPT).

Big Data Technologies

- Frameworks: Hadoop, Spark.
- Databases: NoSQL databases (MongoDB, Cassandra).

4. Practical Experience

Projects

- Start with small datasets (Kaggle, UCI Machine Learning Repository).
- Progress to more complex projects involving real-world data.
- Work on end-to-end projects, from data collection to model deployment.

Competitions and Challenges

- Participate in Kaggle competitions.
- Engage in hackathons and coding challenges.

5. Soft Skills and Tools

Communication

- Learn to present findings clearly and concisely.
- Practice writing reports and creating dashboards (Tableau, Power BI).

Collaboration Tools

- Version Control: Git and GitHub.
- Project Management: JIRA, Trello.

6. Continuous Learning and Networking

Staying Updated

- Follow data science blogs, podcasts, and research papers.
- Join professional groups and forums (LinkedIn, Kaggle, Reddit, DataSimplifier).

7. Specialization

After gaining a broad understanding, you might want to specialize in areas such as:
- Data Engineering
- Business Analytics
- Computer Vision
- AI and Machine Learning Research

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://topmate.io/analyst/861634

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

Today let's understand the fascinating world of Data Science from start.

## What is Data Science?

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data. In simpler terms, data science involves obtaining, processing, and analyzing data to gain insights for various purposes¹².

### The Data Science Lifecycle

The data science lifecycle refers to the various stages a data science project typically undergoes. While each project is unique, most follow a similar structure:

1. Data Collection and Storage:
- In this initial phase, data is collected from various sources such as databases, Excel files, text files, APIs, web scraping, or real-time data streams.
- The type and volume of data collected depend on the specific problem being addressed.
- Once collected, the data is stored in an appropriate format for further processing.

2. Data Preparation:
- Often considered the most time-consuming phase, data preparation involves cleaning and transforming raw data into a suitable format for analysis.
- Tasks include handling missing or inconsistent data, removing duplicates, normalization, and data type conversions.
- The goal is to create a clean, high-quality dataset that can yield accurate and reliable analytical results.

3. Exploration and Visualization:
- During this phase, data scientists explore the prepared data to understand its patterns, characteristics, and potential anomalies.
- Techniques like statistical analysis and data visualization are used to summarize the data's main features.
- Visualization methods help convey insights effectively.

4. Model Building and Machine Learning:
- This phase involves selecting appropriate algorithms and building predictive models.
- Machine learning techniques are applied to train models on historical data and make predictions.
- Common tasks include regression, classification, clustering, and recommendation systems.

5. Model Evaluation and Deployment:
- After building models, they are evaluated using metrics such as accuracy, precision, recall, and F1-score.
- Once satisfied with the model's performance, it can be deployed for real-world use.
- Deployment may involve integrating the model into an application or system.

### Why Data Science Matters

- Business Insights: Organizations use data science to gain insights into customer behavior, market trends, and operational efficiency. This informs strategic decisions and drives business growth.

- Healthcare and Medicine: Data science helps analyze patient data, predict disease outbreaks, and optimize treatment plans. It contributes to personalized medicine and drug discovery.

- Finance and Risk Management: Financial institutions use data science for fraud detection, credit scoring, and risk assessment. It enhances decision-making and minimizes financial risks.

- Social Sciences and Public Policy: Data science aids in understanding social phenomena, predicting election outcomes, and optimizing public services.

- Technology and Innovation: Data science fuels innovations in artificial intelligence, natural language processing, and recommendation systems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

Top 10 important data science concepts

1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.

2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.

3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.

4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.

5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.

6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.

7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.

8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.

9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.

10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…
Subscribe to a channel