datasciencefun | Unsorted

Telegram-канал datasciencefun - Data Science & Machine Learning

51577

Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free For collaborations: @love_data Buy ads: https://telega.io/c/datasciencefun

Subscribe to a channel

Data Science & Machine Learning

Top 10 important data science concepts

1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.

2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.

3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.

4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.

5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.

6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.

7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.

8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.

9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.

10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

𝐅𝐑𝐄𝐄 𝐎𝐧𝐥𝐢𝐧𝐞 𝐌𝐚𝐬𝐭𝐞𝐫𝐜𝐥𝐚𝐬𝐬 𝐎𝐧 𝐀𝐈/𝐌𝐋😍

Kickstart a rewarding Artificial Intelligence & Machine Learning career

Roadmap to Become a successful AI & ML engineer!  

Eligibility :- Students ,Freshers & Working Professionals 

𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐅𝐨𝐫 𝐅𝐑𝐄𝐄 👇:-

 https://bit.ly/3DC6MbF

(Limited Slots ..HurryUp🏃‍♂️ ) 

𝐃𝐚𝐭𝐞 & 𝐓𝐢𝐦𝐞:-  Jan 09, 2025, at 7 PM

Читать полностью…

Data Science & Machine Learning

Who is Data Scientist?

He/she is responsible for collecting, analyzing and interpreting the results, through a large amount of data. This process is used to take an important decision for the business, which can affect the growth and help to face compititon in the market.

A data scientist analyzes data to extract actionable insight from it. More specifically, a data scientist:

Determines correct datasets and variables.

Identifies the most challenging data-analytics problems.

Collects large sets of data- structured and unstructured, from different sources.

Cleans and validates data ensuring accuracy, completeness, and uniformity.

Builds and applies models and algorithms to mine stores of big data.

Analyzes data to recognize patterns and trends.

Interprets data to find solutions.

Communicates findings to stakeholders using tools like visualization.

Читать полностью…

Data Science & Machine Learning

Machine Learning Roadmap

Читать полностью…

Data Science & Machine Learning

𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐭 𝐉𝐨𝐛 𝐎𝐩𝐞𝐧𝐢𝐧𝐠𝐬 𝐈𝐧 𝐌𝐲𝐧𝐭𝐫𝐚 🔥

Openings:- 50+

Qualification:- Any Graduate/Post Graduate 

Job Location:- Bangalore

Salary:- 12LPA

𝐀𝐩𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐜𝐞𝐬𝐬👇:-  

https://bit.ly/3ZGZMS9

Select your experience & Complete The Registration Process

In the search box , Select the company name "Myntra "& Apply for jobs

Читать полностью…

Data Science & Machine Learning

Hey Guys👋,

The Average Salary Of a Data Scientist is 14LPA 

𝐁𝐞𝐜𝐨𝐦𝐞 𝐚 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐞𝐝 𝐃𝐚𝐭𝐚 𝐒𝐜𝐢𝐞𝐧𝐭𝐢𝐬𝐭 𝐈𝐧 𝐓𝐨𝐩 𝐌𝐍𝐂𝐬😍

We help you master the required skills.

Learn by doing, build Industry level projects

👩‍🎓 1500+ Students Placed
💼 7.2 LPA Avg. Package
💰 41 LPA Highest Package
🤝 450+ Hiring Partners

Apply for FREE👇 :
https://tracking.acciojob.com/g/PUfdDxgHR

( Limited Slots )

Читать полностью…

Data Science & Machine Learning

Data Science Resolution for 2025

Читать полностью…

Data Science & Machine Learning

Complete Roadmap to become a data scientist in 5 months

Free Resources to learn Data Science: /channel/datasciencefun

Week 1-2: Fundamentals
- Day 1-3: Introduction to Data Science, its applications, and roles.
- Day 4-7: Brush up on Python programming.
- Day 8-10: Learn basic statistics and probability.

Week 3-4: Data Manipulation and Visualization
- Day 11-15: Pandas for data manipulation.
- Day 16-20: Data visualization with Matplotlib and Seaborn.

Week 5-6: Machine Learning Foundations
- Day 21-25: Introduction to scikit-learn.
- Day 26-30: Linear regression and logistic regression.

Work on Data Science Projects: /channel/pythonspecialist/29

Week 7-8: Advanced Machine Learning
- Day 31-35: Decision trees and random forests.
- Day 36-40: Clustering (K-Means, DBSCAN) and dimensionality reduction.

Week 9-10: Deep Learning
- Day 41-45: Basics of Neural Networks and TensorFlow/Keras.
- Day 46-50: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

Week 11-12: Data Engineering
- Day 51-55: Learn about SQL and databases.
- Day 56-60: Data preprocessing and cleaning.

Week 13-14: Model Evaluation and Optimization
- Day 61-65: Cross-validation, hyperparameter tuning.
- Day 66-70: Evaluation metrics (accuracy, precision, recall, F1-score).

Week 15-16: Big Data and Tools
- Day 71-75: Introduction to big data technologies (Hadoop, Spark).
- Day 76-80: Basics of cloud computing (AWS, GCP, Azure).

Week 17-18: Deployment and Production
- Day 81-85: Model deployment with Flask or FastAPI.
- Day 86-90: Containerization with Docker, cloud deployment (AWS, Heroku).

Week 19-20: Specialization
- Day 91-95: NLP or Computer Vision, based on your interests.

Week 21-22: Projects and Portfolios
- Day 96-100: Work on personal data science projects.

Week 23-24: Soft Skills and Networking
- Day 101-105: Improve communication and presentation skills.
- Day 106-110: Attend online data science meetups or forums.

Week 25-26: Interview Preparation
- Day 111-115: Practice coding interviews on platforms like LeetCode.
- Day 116-120: Review your projects and be ready to discuss them.

Week 27-28: Apply for Jobs
- Day 121-125: Start applying for entry-level data scientist positions.

Week 29-30: Interviews
- Day 126-130: Attend interviews, practice whiteboard problems.

Week 31-32: Continuous Learning
- Day 131-135: Stay updated with the latest trends in data science.

Week 33-34: Accepting Offers
- Day 136-140: Evaluate job offers and negotiate if necessary.

Week 35-36: Settling In
- Day 141-150: Start your new data science job, adapt to the team, and continue learning on the job.

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.

May that be you in 2025.

Happy New Year!

Читать полностью…

Data Science & Machine Learning

1³+2³+3³+4³+5³+6³+7³+8³+9³
= 2025 😊 Happy New Year 🥳

Читать полностью…

Data Science & Machine Learning

Here is how you can explain your project in an interview

When you’re in an interview, it’s super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:

➤ 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 𝗢𝘃𝗲𝗿𝘃𝗶𝗲𝘄:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.

➤ 𝗣𝗿𝗼𝗯𝗹𝗲𝗺 𝗦𝘁𝗮𝘁𝗲𝗺𝗲𝗻𝘁:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.

➤ 𝗣𝗿𝗼𝗽𝗼𝘀𝗲𝗱 𝗦𝗼𝗹𝘂𝘁𝗶𝗼𝗻:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?

➤ 𝗬𝗼𝘂𝗿 𝗥𝗼𝗹𝗲:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure it’s clear whether you were leading the project, a key player, or supporting the team.

➤ 𝗧𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀 𝗮𝗻𝗱 𝗧𝗼𝗼𝗹𝘀:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.

➤ 𝗜𝗺𝗽𝗮𝗰𝘁 𝗮𝗻𝗱 𝗔𝗰𝗵𝗶𝗲𝘃𝗲𝗺𝗲𝗻𝘁𝘀:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got. This helps show the project was a success and highlights your contribution.

➤ 𝗧𝗲𝗮𝗺 𝗖𝗼𝗹𝗹𝗮𝗯𝗼𝗿𝗮𝘁𝗶𝗼𝗻:
- If you worked with a team, talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the team’s success?

➤ 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗮𝗻𝗱 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁:
- Reflect on what you learned from the project. How did it help you grow professionally? What new skills did you gain, and what would you do differently next time?

➤ 𝗧𝗶𝗽𝘀 𝗳𝗼𝗿 𝗬𝗼𝘂𝗿 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗣𝗿𝗲𝗽𝗮𝗿𝗮𝘁𝗶𝗼𝗻:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- Know why you chose the project, what your role was, what decisions you made, and how the results compared to what you expected.
- Be clear on the scope of the project whether it was a long-term effort or a quick task.
- If there’s a pause after you describe the project, don’t hesitate to ask if they’d like more details or if there’s a specific part they’re interested in.

Remember, 𝗰𝗼𝗺𝗺𝘂𝗻𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗶𝘀 𝗸𝗲𝘆. You might have done great work, but if you don’t explain it well, it’s hard for the interviewer to understand your impact. So, practice explaining your projects with clarity.

Читать полностью…

Data Science & Machine Learning

Are you looking to become a machine learning engineer? The algorithm brought you to the right place! 📌

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

Читать полностью…

Data Science & Machine Learning

Time Complexity of 10 Most Popular ML Algorithms
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.

For instance,
1️⃣ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.

2️⃣ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.

3️⃣ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.

4️⃣ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.

5️⃣ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.

Читать полностью…

Data Science & Machine Learning

🚀 𝐁𝐞𝐜𝐨𝐦𝐞 𝐚 𝐓𝐎𝐏 𝐍𝐎𝐓𝐂𝐇 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐭/𝐃𝐚𝐭𝐚 𝐒𝐜𝐢𝐞𝐧𝐭𝐢𝐬𝐭 😍

Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.

👩‍🎓 1500+ Students Placed
💼 7.2 LPA Avg. Package
💰 41 LPA Highest Package
🤝 450+ Hiring Partners

 𝐀𝐩𝐩𝐥𝐲 𝐍𝐨𝐰👇 :

https://pdlink.in/3BLThWo

( Limited Slots )

Land your Dream Data Science and AI Job, Learn live from top Data Experts

Читать полностью…

Data Science & Machine Learning

For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.

1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.

2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.

3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: /channel/datasciencefun

Like if you need similar content

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

Machine Learning Algorithms and Frameworks

Читать полностью…

Data Science & Machine Learning

𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 (𝗡𝗼 𝗦𝘁𝗿𝗶𝗻𝗴𝘀 𝗔𝘁𝘁𝗮𝗰𝗵𝗲𝗱)

𝗡𝗼 𝗳𝗮𝗻𝗰𝘆 𝗰𝗼𝘂𝗿𝘀𝗲𝘀, 𝗻𝗼 𝗰𝗼𝗻𝗱𝗶𝘁𝗶𝗼𝗻𝘀, 𝗷𝘂𝘀𝘁 𝗽𝘂𝗿𝗲 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴.

𝗛𝗲𝗿𝗲’𝘀 𝗵𝗼𝘄 𝘁𝗼 𝗯𝗲𝗰𝗼𝗺𝗲 𝗮 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘:

1️⃣ Python Programming for Data Science → Harvard’s CS50P
The best intro to Python for absolute beginners:
↬ Covers loops, data structures, and practical exercises.
↬ Designed to help you build foundational coding skills.

Link: https://cs50.harvard.edu/python/

/channel/datasciencefun

2️⃣ Statistics & Probability → Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
↬ Clear, beginner-friendly videos.
↬ Exercises to test your skills.

Link: https://www.khanacademy.org/math/statistics-probability

https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

3️⃣ Linear Algebra for Data Science → 3Blue1Brown
↬ Learn about matrices, vectors, and transformations.
↬ Essential for machine learning models.

Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr

4️⃣ SQL Basics → Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
↬ Writing queries, joins, and filtering data.
↬ Real-world datasets to practice.

Link: https://mode.com/sql-tutorial

https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

5️⃣ Data Visualization → freeCodeCamp
Learn to create stunning visualizations using Python libraries:
↬ Covers Matplotlib, Seaborn, and Plotly.
↬ Step-by-step projects included.

Link: https://www.youtube.com/watch?v=JLzTJhC2DZg

https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34

6️⃣ Machine Learning Basics → Google’s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
↬ Learn supervised and unsupervised learning.
↬ Hands-on coding with TensorFlow.

Link: https://developers.google.com/machine-learning/crash-course

7️⃣ Deep Learning → Fast.ai’s Free Course
Fast.ai makes deep learning easy and accessible:
↬ Build neural networks with PyTorch.
↬ Learn by coding real projects.

Link: https://course.fast.ai/

8️⃣ Data Science Projects → Kaggle
↬ Compete in challenges to practice your skills.
↬ Great way to build your portfolio.

Link: https://www.kaggle.com/

Читать полностью…

Data Science & Machine Learning

𝐈𝐁𝐌 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬😍

🚀 Dive into the world of Data Analytics with these 6 free courses by IBM!

Gain practical knowledge and stand out in your career with tools designed for real-world applications.

All courses come with expert guidance and are free to access!🎉

𝐋𝐢𝐧𝐤 👇:- 
 
https://bit.ly/4iXOmmb
 
Enroll For FREE & Get Certified 🎓

Читать полностью…

Data Science & Machine Learning

FREE DATASET BUILDING YOUR PORTFOLIO

1. Supermarket Sales - https://lnkd.in/e86UpCMv
2.Credit Card Fraud Detection - https://lnkd.in/eFTsZDCW
3. FIFA 22 complete player dataset - https://lnkd.in/eDScdUUM
4. Walmart Store Sales Forecasting - https://lnkd.in/eVT6h-CT
5. Netflix Movies and TV Shows - https://lnkd.in/eZ3cduwK
6.LinkedIn Data Analyst jobs listings - https://lnkd.in/ezqxcmrE
7. Top 50 Fast-Food Chains in USA - https://lnkd.in/esBjf5u4
8. Amazon and Best Buy Electronics - https://lnkd.in/e4fBZvJ3
9. Forecasting Book Sales - https://lnkd.in/eXHN2XsQ
10. Real / Fake Job Posting Prediction - https://lnkd.in/e5SDDW9G

Читать полностью…

Data Science & Machine Learning

Industry Data Science vs Academia Data Science

Comparing Data Science in academia and Data Science in industry is like comparing tennis with table tennis: they sound similar but in the end, they are completely different!

5 big differences between Data Science in academia and in industry 👇:

1️⃣ Model vs Data: Academia focuses on models, industry focuses on data. In academia, it’s all about trying to find the best model architecture to optimise a defined metric. In industry, loading and processing the data accounts for around 80% of the job.

2️⃣ Novelty vs Efficiency: The end goal of academia is often to publish a paper and to do so, you will need to find and implement a novel approach. Industry is all about efficiency: reusing existing models as much as possible and applying them to your use case.

3️⃣ Complex vs Simple: More often than not, academia requires complex solutions. I know that this isn’t always the case but unfortunately, complex papers get a higher chance of being accepted at top conferences. In industry, it’s all about simplicity: trying to find the simplest solution that solves a specific problem.

4️⃣ Theory vs Engineering: To succeed in academia, you need to have strong theoretical and maths skills. To succeed in industry, you need to develop strong engineering skills. It is great to be able to train a model in a notebook but if you cannot deploy your model in production, it will be completely useless.

5️⃣ Knowledge impact vs $ impact: In academia, it’s all about creating new work and expanding human knowledge. In industry, it is all about using data to drive value and increase revenue.

Читать полностью…

Data Science & Machine Learning

Data Science Interview Cheat Sheet! 🧠

1️⃣ Key Concepts
Master statistics, machine learning, and programming basics. They’re always top priorities!

2️⃣ Essential Tools
Know your way around Python, SQL, and data visualization platforms like Tableau or Power BI.

3️⃣ Real-World Projects
Be ready to explain your projects—what problem you solved, how you did it, and the results you achieved! 🌟

4️⃣ Problem-Solving Skills
Practice coding challenges and case studies.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍

Читать полностью…

Data Science & Machine Learning

🚨30 FREE Dataset Sources for Data Science Projects🔥

Data Simplifier: https://datasimplifier.com/best-data-analyst-projects-for-freshers/

US Government Dataset: https://www.data.gov/

Open Government Data (OGD) Platform India: https://data.gov.in/

The World Bank Open Data: https://data.worldbank.org/

Data World: https://data.world/

BFI - Industry Data and Insights: https://www.bfi.org.uk/data-statistics

The Humanitarian Data Exchange (HDX): https://data.humdata.org/

Data at World Health Organization (WHO): https://www.who.int/data

FBI’s Crime Data Explorer: https://crime-data-explorer.fr.cloud.gov/

AWS Open Data Registry: https://registry.opendata.aws/

FiveThirtyEight: https://data.fivethirtyeight.com/

IMDb Datasets: https://www.imdb.com/interfaces/

Kaggle: https://www.kaggle.com/datasets

UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php

Google Dataset Search: https://datasetsearch.research.google.com/

Nasdaq Data Link: https://data.nasdaq.com/

Recommender Systems and Personalization Datasets: https://cseweb.ucsd.edu/~jmcauley/datasets.html

Reddit - Datasets: https://www.reddit.com/r/datasets/

Open Data Network by Socrata: https://www.opendatanetwork.com/

Climate Data Online by NOAA: https://www.ncdc.noaa.gov/cdo-web/

Azure Open Datasets: https://azure.microsoft.com/en-us/services/open-datasets/

IEEE Data Port: https://ieee-dataport.org/

Wikipedia: Database: https://dumps.wikimedia.org/

BuzzFeed News: https://github.com/BuzzFeedNews/everything

Academic Torrents: https://academictorrents.com/

Yelp Open Dataset: https://www.yelp.com/dataset

The NLP Index by Quantum Stat: https://index.quantumstat.com/

Computer Vision Online: http://www.computervisiononline.com/dataset

Visual Data Discovery: https://www.visualdata.io/

Roboflow Public Datasets: https://public.roboflow.com/

Computer Vision Group, TUM: https://vision.in.tum.de/data/datasets

Читать полностью…

Data Science & Machine Learning

Pandas for Data Science

Читать полностью…

Data Science & Machine Learning

🌟 Embark on a Journey of Discovery and Innovation with @DeepLearning_ai! and @MachineLearning_Programming 🌟

What We Offer:
* 🧠 Deep Dives into AI & ML
.
* 🤖 Latest in Deep Learning.
* 📊 Data Science Mastery.
* 👁 Computer Vision & Image Processing.
* 📚 Exclusive Access to Research Papers.

Why Us?
* Connect with experts and enthusiasts.
* Stay updated, stay ahead.
* Empower your knowledge and career in tech.

Ready for a deep dive? Click here to explore, learn, and grow with
@DeepLearning_ai

@MachineLearning_Programming!

Step into the future—today.

Читать полностью…

Data Science & Machine Learning

Data Science Tip💡

Always start with 𝗗𝗲𝘀𝗰𝗿𝗶𝗽𝘁𝗶𝘃𝗲 𝗦𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀 before jumping into complex models.

• Understand Descriptive vs. Inferential Statistics: Descriptive summarizes; Inferential predicts.

• Use the Empirical Rule (68-95-99.7) to grasp normal distribution probabilities.

• Apply standard deviation and variance to quantify data spread.

• Leverage probability distributions like PMF, PDF, and CDF for modeling.

• Explore correlation vs. covariance to uncover variable relationships.

Are your insights actionable enough?

Statistics is often misused, leading to flawed conclusions. But is your interpretation meaningful enough to drive decisions?

↳ Focus on 𝗰𝗹𝗮𝗿𝗶𝘁𝘆 𝗮𝗻𝗱 𝗰𝗼𝗻𝘁𝗲𝘅𝘁:

• Identify whether data follows a normal distribution using Q-Q plots.

• Use visualizations like boxplots and histograms for a quick overview.

• Incorporate parametric and non-parametric methods for density estimations.

• Avoid misrepresentation by understanding skewness and kurtosis.

• Validate results with statistical tests like Shapiro-Wilk for normality.

See how much you improve 𝘆𝗼𝘂𝗿 𝗱𝗲𝗰𝗶𝘀𝗶𝗼𝗻𝘀.

Data Science Interview Resources
👇👇
https://topmate.io/analyst/1024129

Like for more 😄

Читать полностью…

Data Science & Machine Learning

Data Science Benefits

Читать полностью…

Data Science & Machine Learning

🎓 Dive deep into Qualitative Data Analysis with ATLAS.ti and Regression Tests & Data Analysis using SPSS, January 2025

Hands-on experience for your academic and professional journey.
💡 Takeaways:
✔ Free installation guidance for ATLAS.ti & SPSS
✔ Lifetime access to recorded sessions & e-materials
✔ Certification of participation
✔ Practical datasets for hands-on practice
💲
👉 Team Offer: Every 4th registration is FREE!

🔗 Register here: https://forms.gle/Cry9yRCLXYe6nVuK6

Whatsapp group link: https://chat.whatsapp.com/EmkbjEh4oQJ3ZLt5I0581M

Читать полностью…

Data Science & Machine Learning

Python Libraries for Data Science

Читать полностью…

Data Science & Machine Learning

𝐓𝐨𝐩 𝐌𝐍𝐂𝐬 & 𝐒𝐭𝐚𝐫𝐭𝐮𝐩 𝐂𝐨𝐦𝐩𝐚𝐧𝐢𝐞𝐬 𝐇𝐢𝐫𝐢𝐧𝐠 🔥

Roles Hiring:- 
- Data Analyst
- Data Engineer
- SQL Developer
- Power BI Developers
- Business Analyst 
- Data Scientist 

Salary Range :- 6 To 24LPA 

𝐀𝐩𝐩𝐥𝐲 𝐍𝐨𝐰👇:-  

https://bit.ly/3ZGZMS9

Enter your experience & Complete The Registration Process

Select the company name & apply for jobs

Читать полностью…

Data Science & Machine Learning

If I were to start my Machine Learning career from scratch (as an engineer), I'd focus here (no specific order):

1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving

And building as much as possible.

Читать полностью…
Subscribe to a channel