dlinnlp | Unsorted

Telegram-канал dlinnlp - DL in NLP

12548

Новости и обзоры статей на тему обработки естественного языка, нейросетей и всего такого. Связь: @dropout05 (рекламы нет)

Subscribe to a channel

DL in NLP

Тинькофф проведет NLP-митап в Москве 🦾

Встречу AI-команда Тинькофф проведет вместе с VK.

— Эксперт VK расскажет о нестандартном способе получения эмбеддингов текстовых последовательностей.

— А исследователи из Тинькофф поделятся собственным методом эффективного файнтюнинга моделей и объяснят, как можно линейно интерполировать их веса.
Ждут всех, кто интересуется обработкой текстов или сопереживает ей.

Митап пройдет 22 ноября в БЦ «Водный». Зарегистрироваться и прочитать о докладах подробнее: https://o.tinkoff.ru/monolog-ai.tinkoff

#промо

Читать полностью…

DL in NLP

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
BigScience
arxiv.org/abs/2211.05100

Мы уже много говорили про BigScience и BLOOM и вот наконец-то вышла статья со всеми деталями включая особенности архитектуры, тренировки и то как модель эвалюировали.

Интересно насколько сильно мир больших моделей изменился за последний год. Если после релиза T0 я совершенно не знал как запихать 11B для инференса в 4 V100, сейчас совершенно без проблем инферить 30B (в int8) всего с двумя 3090, а 11B помещается и в одну. И мне кажется BigScience оказал огромное косвенное влияние на развитие как коммьюнити тренирующего большие модели, так и тулз вокруг них: DeepSpeed, Accelerate, Megatron, bitsandbytes, ...

Но давайте про интересные моменты:
1. ROOTS (статья) — корпус на 1.6Tb текста на котором тренировали модель он разбит на датасеты по языкам и доменам и доступен на 🤗 Datasets
1. Архитектура (статья) — Decoder-only transformer, ALiBi positional embeddings, embedding LayerNorm. Нормализация эмбеддингов сильно помогает стабильности тренировки (в fp16). Токенизация делалась с помощью BPE и словать оптимизировали под fertility токенизатора для всех языков.
1. Тренировка: bfloat16 (сильно улучшает стабильность), 3D parallelism, cosine scheduler, lr=6e-5, beta2=0.95, batch size=2048.
1. Environment impact (статья) — тренировка GPT-3 выработала порядка 500 тонн CO2, тренировка BLOOM — 25. Это стало возможно благодаря более современным GPU, эффективным методам параллелизации и, самое главное, атомной электростанции которая питает суперкомьютер Jean Zay.

В общем статья BLOOM неплохо суммаризирует результаты BigScience и на удивление не очень большая (42 страницы). Рекомендую пройтись по ней и почитать те главы что вам интересны.

С моделькой можно поиграться в Spaces или запустить её локально. Веса модели в fp32 (?) занимают 360Гб. Вот тут гайд по использованию int8 в трансформерах. С ними вы можете запустить модель хоть на картошке, но если у вас меньше 300Гб GPU RAM будет считаться довольно медленно.

Читать полностью…

DL in NLP

Одной строкой #13

1. Training Transformers — очень классный разбор того что важно в тренировке трансформеров от lr warmup и PreNorm до хитрых способов инициализации
1. DALL·E API Available in Public Beta — можно запрашивать как просто генерацию, так и editing, и вариации. Наверное через editing можно замутить и outpainting. Цена вопроса $0.02 за изображение 1024x1024
1. Midjourney V4 — новые картинки выглядят прямо на порядок лучше и детальнее. Ждём новых новостей того как Midjorney выигрывает art competitions?
1. LangChain — простая тулза которая запихает за вас длинные тексты в модельку. Работает так: нарезка на чатки, суммарицазия чанков, запихать все саммари в сетку.
1. Короткий рассказ о том как автоматизировали clapper detection с помощью диплёрнинга
1. Key to successful projects in Deep Learning are fast turnaround times of experiments. Тред о том как ускорять ваши эксперименты и за чем следить. Говорит про многие стандартные ошибки, буду всем студентам скидывать.
1. XONSH — a Python-powered shell. Сейчас ищу альтернативу zsh/fish и xonish выглядит забавно.

Промпт к картинке: Yann LeCun fighting thinking machines, Dune 2021. Midjorney v4

Читать полностью…

DL in NLP

А вот и первая нормальная подача в суд на GitHub Copilot. Фирма не особенно известная, Joseph Saveri, и если вы изучите дело чуть глубже, вы поймете, что это чисто юридический нонсенс, надеюсь, они в суде предъявят больше доказательств своей правоты. Самое смешное, кажется, на странице 18, там показывается вот такой кусок кода, созданного Copilot:


function isEven(n) {
return n % 2 === 0;
}


и уточняется, что этот кусок совершенно точно “основан на существующем коде. А именно, пример кода, который фигурирует в онлайн-книге Mastering JS, написанной Валерием Карповым”. Любой программист вам скажет, что это просто смехотворный пример, как утверждать, что слово “смехотворный” я списал из словаря. Так что дело они, конечно, проиграют, но хайп свой уже поймали.

https://githubcopilotlitigation.com/

Читать полностью…

DL in NLP

Howto
github.com/Guitaricet/howto

Я тут за выходные сделал небольшой пет-проект: баш команду которая может писать за вас баш-команды с помощью Codex. Потому что хватит пытаться запомнить все команды конды, tar, awk и прочюю дичь.

Теперь если вы хотите установить новый кернел для юпитера или найти все файлы больше 100Mb, не надо идти в гугл. Можно просто вести в терминал

howto add kernel to jupyter

и получить нужную команду.

Вся тулза очень простая: это просто промпт для Codex, где вы просите дать баш команду для вашего текста. Работает на удивление хорошо. На данный момент для того чтобы работало надо чтобы у вас был аккаунт на OpenAI.

Читать полностью…

DL in NLP

🌶 GitHub Copilot investigation 🌶

Помните бугурт когда Copilot запустился? Кто-то был очень рад (как я сейчас), а кто-то говорил что их код использовали для обучения нейросети без их ведома и против лицензии. Например, GPLv3 обязывает делать ваш проект опенсорсным если вы используете какой-то другой GPLv3 проект. Даже более того, если у вас не указана лицензия, по законам США вам всё ещё принадлежит копирайт на написанный вами код. То есть в принципе вы можете подать в суд на того кто этот код использует без вашего ведома. Вы ведь явно не указали условия.

Сейчас использование данных для обучения находится в серой зоне и его надеются подогнать под fair use. Это очень амерканская штука, которая групо говоря позволяет использовать копирайченные материалы если ты не делаешь ими ничего плохого, чуть более конкретно "the effect of the use upon the potential market for or value of the copyrighted work". Решается насколько это плохо судом. Из того что я слышал, основная защита Github Copilot это что он не использет код как код, а лишь обучается на коде, так же как человек мог бы обучаться.

Matthew Butterick решил что аргумент это такой себе и сейчас ведёт активное расследование которое может завершиться судом против Github. Запасаемся попкорном, может быть интересно. 🍿🍿🍿

Читать полностью…

DL in NLP

Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners
Ye et al. [KAIST and LG]
arxiv.org/abs/2210.02969

Люблю простые и работающие статьи — эта как раз одна из них. Обычно когда мы делаем zero-shot learning на языковых моделях мы составляем промпт таким образом: инструкция + вопрос и генерируем ответ. Т0 при обучении так и делал и обучался просто как языковая модель максимизируя вероятность правильного ответа. Потом, для классификации, можно сравнить вероятности всех возможных ответов и выбрать наибольший. Подход работает неплохо, если модель большая.

В этой статье предлагают сделать два небольших изменения которые приводят к большим улучшениям. Во-первых они предлагают добавить unlikelihood loss для того чтобы оучаться на негативных примерах — неправильных ответах/классах, которые мы случайно семплируем из датасета. В результате модель минимизировать L_lm(pos) + L_unlikelihood(neg).

Во-вторых, для выбора класса сравнивают не вероятность класса а вероятность вопроса. То есть не p(ответ | инструкция + вопрос), а p(инструкция | вопрос + ответ).

Предобучаются на сабсете P3 (так же как T0), по результатам получают SOTA на zero-shot BigBench. Также в zero-shot режиме обходят 3-shot GPT-3 (175B).

Читать полностью…

DL in NLP

Китайцы очень любят делать объёмные обзоры той или иной подобласти машинного обучения с перечислением основных работ и главными прорывными идеями. Статей выходит очень много каждый день, и невозможно все прочесть. Поэтому такие обзоры ценны (если качественно написаны, конечно, что довольно редко).

Недавно вышла очень неплохая статья-обзор различных вариантов Трансформеров с фокусом на моделировании языка (NLP). Это мастр-рид для всех, кто начинает работать с NLP и интересуется Трансформерами. В статье рассматриваются базовые принципы работы self-attention и такие подробности современных вариантов Трансформеров как модификации архитектуры, претрейнинг и их приложения.

Статья: A Survey of Transformers.

Читать полностью…

DL in NLP

Unsupervised Speech Recognition
ai.facebook.com/research/publications/unsupervised-speech-recognition

FAIR придумал как обучать системы распознавания речи без размеченных данных 🤯
Для этого звуки кластеризуют на фонемы, обучают что-то типа BERT на этих фонемах, после чего выполняют процедуру adversarial алайнмента между фонемами и текстом а-ля MUSE.

На самом деле дьявол в деталях, оч рекомендую прочитать статью.

Читать полностью…

DL in NLP

Ждём T6 размером в 10 триллионов параметров

Читать полностью…

DL in NLP

FNet: Mixing Tokens with Fourier Transforms
Lee-Thorp et al., [Google]
arxiv.org/abs/2105.03824

Заменяем self-attention на обычное преобразование Фурье (хоть прямо torch.fft) и трансформер продолжает (хорошо) работать. Ускорение в 8 раз на GPU и в 2 раза на TPU. На GLUE показывает заметно худшие результаты чем обычных трансформер, но обходит старые подходы типа GPT-1 и ELMo. На Long-Range Arena близок к трансформеру. Пожалуй это самая безумная но одновременнно и эффектная альтернатива self-attention, которую я видел за последний год. Вангую, что attention не заменит, но это хороший прогресс в поиске новых архитектур.

За наводку спасибо @Liehtman

Читать полностью…

DL in NLP

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention
Wies et al.
arxiv.org/abs/2105.03928

Авторы пытаются понять как подбирать гиперпараметры для трансформера и приходят к выводу, что размер словаря очень важен и зачастую ограничивает capacity архитектуры.

Читать полностью…

DL in NLP

Samsung Innovation Campus - AI Lectorium
youtube.com/playlist?list=PLJEYfuHbcEIB-DdeoWaQ6Bzt0903kbmWK

Внезапно обнаружил много лекций от московского Samsung AI Center. Уроверь скорее advanced и ожидает, что вы уже хорошо знакомы с нейростеками. По большей части лекции ближе по тематике к CV, но есть и более общие темы: например о том, как ускорять инференс и ставить эксперименты. Ещё очень хочу выделить лекцию про GAN, где они рассматриваются достаточно абстрактно и не присязаны сильно к изображениям — получилось просто 🔥.

Кстати у них в конце плейлиста видно запланированную на 28 апреля лекцию по суммаризации текста, так что можно ожидать больше NLP.

Читать полностью…

DL in NLP

Пачка ссылок:

1. ADAPET — новый метод few-shot learning основанный на GPT-2/3 и prompts. Обходит PET и iPET без дополнительных даннных.
1. Scaling up BERT-like model Inference on modern CPU - Part 1
1. Controllable Text Generation — презентация PhD-диссера
1. 🤗 Accelerate — единая обёртка для CPU/GPU/distributed/TPU. Поделитесь в группе впечатлениями, кто уже пробовал.
1. How to Train BERT with an Academic Budget — TL;DR используйте LARGE вместо BASE, maxlen=128 и DeepSpeed.
1. XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation — более экстремальная эвалюация мультизяычных моделек, плюс овервью текущего состояния этой области. Тепрь включает и аналог Checklist

Читать полностью…

DL in NLP

Неделя начинается с NVIDIA GTC, блогпостов по prompt enginering и рассуждений на тему того, почему 🔥 лучше 💩

1. NVIDIA GTC 2021 — бесплатная конфа, много интересных спикеров начиная с Hinton, Bengio, LeCun и продолжая более локальными коммьютини, например Lightning и DeepPavlov там тоже будут
1. How many data points is a prompt worth? — от 100 до 3000, если верить 🤗
1. How usability improves performance in PyTorch
1. Блогпост на тему Approximating How Single-Head Attention Learns; статью мы недавно обозревали в канале
1. Интересный взгляд на ADAM от Tim Dettmers: по сути это такой фильтр Калмана для градиентов
1. PyTorch in Tesla — чтобы вы потом могли ответить, а где его используют в проде
1. Efficient Large-Scale Language Model Training on GPU Clusters — про то, как тяжело жить, когда у вас 3 тысячи GPU

Читать полностью…

DL in NLP

Кстати если вы всё ещё не перешли на Python 3.10 (или даже 3.11) оно того очень стоит. Главная причина — новые красивые и более удобочитаемые сообщения об ошибке.

Читать полностью…

DL in NLP

To recommend or not to recommend?

Бесплатный урок по основам рекомендательных систем от OTUS для тех кто уже знает ML и хочет погрузиться в recsys. На нём разберут несколько подходов к построению рекомендательных систем, как и почему они работают. Вы также реализуете одну из этих систем своими руками 🔥

Вебинар пройдет 16 ноября в 18:00 в преддверии старта онлайн-курса «Machine Learning. Advanced» от OTUS. Это шанс протестировать формат обучения и познакомиться с Марией Тихоновой, руководителем курсов по ML в OTUS и специалистом по анализу данных в команде AGI NLP в Сбере.

🔖промокод BLACKFRIDAY22 скидка -20% на курс до 30.11.2022

👉Регистрация: https://otus.pw/HsiZ/

#промо

Читать полностью…

DL in NLP

"Broken" neural scaling laws
Caballero et al.
arxiv.org/abs/2210.14891

Давно не видел такого кликбейтного заголовка (скобочки добавил я, чтобы снизить ожидания). В статье Scaling Laws for Neural Language Models показали довольно строгую powerlaw-зависимость между размером нейросети и тестовым лоссом. Это сказало две вещи: 1) увеличение сети (при соответственном увеличении данных) это всегда хорошо (для LM) 2) насколько оно становится лучше, можно предсказать простой формулой loss = (n/N)^a, где n - число параметров сети, N=8.8 10^13, a=0.076.

Этот подход несколько раз улучшали, обобщали на другие задачи и архитектуры, но была проблема что хоть метод и точен для языкового моделирования, на downstream-задачах (например, классификации) он не работает. Более того зачастую зависимость между размером сети и качеством классификации немонотонна (иногда увеличение сети делает её хуже).

В статье broken scaling laws предлагают использовать не обычный powerlaw, а кусочную (отсюда — broken) функцию которая является powerlaw на отрезках. Это позвляет более точно фитить текущие данные о соотношении метрики и размера сети, но собственно вопрос в том а зачем это вообще надо? Ведь если функция кусочная, про экстраполяцию особенно не поговоришь, тк вдруг зависимость снова изменится.

В broken power law говорят что обычно после 1-2 разрывов немонотонное поведение прекращается и что с помощью предложенной формы powerlaw на практике можно более точно экстраполировать изменение метрик чем обычным (n/N)^a. Применили подход к ImageNet, BigBench, NMT, и некоторым играм AlphaZero.

То есть scaling laws не сломали, но зато у нас теперь есть ещё одна тулза, которая применима не только к LM, но и к другим задачам.

Читать полностью…

DL in NLP

Нейрокомпрессия звука

Сжатие является важной частью современного Интернета, поскольку оно позволяет людям легко обмениваться высококачественными фотографиями, прослушивать аудиосообщения, транслировать любимые передачи и многое другое.

Сегодня, исследователи из Мета совершили прорыв в области гиперкомпрессии аудио с помощью ИИ. Представьте себе, что вы слушаете аудиосообщение друга в районе с низким качеством связи, а оно не тормозит и не глючит.

Они создали трехкомпонентную систему и обучили ее сжимать аудиоданные до заданного размера. Затем эти данные могут быть декодированы с помощью нейронной сети.

Они добились примерно 10-кратной степени сжатия по сравнению с MP3 при 64 кбит/с без потери качества. Хотя подобные методы уже применялись для речи, они первыми применили их для стереофонического аудио с частотой дискретизации 48 кГц (т.е. качество CD), которое является стандартом для распространения музыки.

Pied Piper только что стал реальностью, более того - опенсорсной.

🦦 Блог-пост
📖 Статья
🤤 Код

Читать полностью…

DL in NLP

You are GPT-3

Увидел в твиттере совершенно огненный тред о том как GPT-3 использет википедию, ipython и другие штуки, чтобы отвечать на вопросы. Выглядит это примерно так. Всё начинается с промта

"You are GPT-3. Answer the following questions. If you can't answer it directly, consult IPython, if you need to answer questions about events past your latest training data April 2021, consult wikipedia." (полный промт на картинке)

Это позволяет GPT-3 отвечать не только на вопросы типа "сколько сантиметров в дюйме" или "как зовут первого президента США", но и на

1. вычислительные задачи — 7 + 19^3
1. операции со строками — разворот строки
1. вопросы о недавних ивентах — когда умерла Елизавета вторая
1. точные даты — когда был выпущен последний эпизод Lost
1. вопросы требущие комбинации common sense и вычислений — число ног паука в третьей степени (сложно перееоценить важность этого вопроса 🤣)

Идея основана на статье Prompt Programming for Large Language Models

По сути в 10 строчек промпта и 100 строк кода вы можете написать своего Google Assistant. Думаю надо будет заняться этим на выходных.

Читать полностью…

DL in NLP

Одной строкой #12

1. GENIE: Higher-Order Denoising Diffusion Solvers — генерировать с помощью диффузионных моделей сложно, простым методам нужно 200-1000 шагов чтобы сойтись. PMLS-метод который основан на схемах решения дифференциальных уравнений может делать это за 50 шагов и благодаря ему Stable Diffusion очень быстрый. В GENIE развивают эту идею дальше и делают ещё более хитрый метод который позволяет гененировать хорошие изображения всего за 15 шагов.
1. Pre-Training for Robots — новый SOTA метод для предтренировки роботов, идея простая: берёте все offline RL датасеты и обучаетесь на них (с парой трюков), после online RL работает очень быстро — всего за 10-15 попыток.
1. PyTorch Contributor: Why And How To Become One — хороший гайд для тех кто хочет начать контрибьютить в пайторч (и какие плюшки это может вам дать).
1. Multilingual BERT has an accent — mBERT предпоитает английскую грамматику и порядок слов. Даже в тех языках где можно строить предложения подругому (греческий, испанский).

Читать полностью…

DL in NLP

Одной строкой #11

1. Building makemore Part 4: Becoming a Backprop Ninja — новая лекция Андрея по бэкпропу. Теперь более хардкорно: пишем градиенты через MLP, cross-entropy, BatchNorm. Вы получите максимальную пользу если в начале попытаетесь решить задачки, а уже после этого посмотрите решения в видосе.
1. State of AI Report 2022 — топовый обзор что произошло в области за последний год. Написан довольно доступным языком, must read.
1. Очень math-forward введение в диффузионные модели с кодом на JAX.
1. Deep Dive on Google's Exascale TPUv4 AI Systems — 🔥 одна из самых подробных статей о TPU которые я видел в открытом доступе. Много интересных деталей, но если хотите просто узнать насколько 2048 TPUv4 быстрее 2048 A100 для трансформеров, то ответ на 15%.
1. Transformers 4.23: добавили несколько моделей включая Whisper и Deformable DETR. Начинают избавляться от pickle, сейчас экспериментируют с Safetensors.
1. A Gentle Introduction to 8-bit Matrix Multiplication — о том как использовать 8-bit с Transformers и экономить 4x памяти по сравнению с fp32.

Читать полностью…

DL in NLP

True Few-Shot Learning with Language Models
Perez et al.
arxiv.org/abs/2105.11447

Мы буквально несколько недель назад восхищались PET, iPET, ADAPET и другими штуками, например ещё "how many data points is a prompt worth". Perez et al в своей новой статье указывают на один косяк во всех предыдущих статьях по few-shot — наличие валидационного сета, который далеко не few-shot и на котором вы тюните ваши гиперпараметры и подбираете промты.
В статье показывают, что качество ADAPET очень сильно зависит от всего этого и в случае, когда у вас действительно мало размеченных (валидационных) данных вы можете быть очень далеко от близких к SOTA (да и вообще к применимым на практике) решениям.

В общем вывод стандартный: размечайте данные (хотя бы небольшую валидационную выборку), это единственый надёжный метод получить хорошую модель.

Читать полностью…

DL in NLP

🏋🏼Google finally released TPU v4, it will be avaliable for customers later this year.
🥴The previous v3 version was unveiled in 2018 and the v4 is claimed to be twice as fast.
🌽TPU v4 combines in a 4096 chips sumercomputer that reaches 1 exaFLOPs (10**18) of performance

Read more on [hpcwire] and watch the video Google I/O ‘21

Читать полностью…

DL in NLP

Rethinking Skip Connection with Layer Normalization in Transformers and ResNets
arxiv.org/abs/2105.07205
Liu et al.

Авторы анализируют различные комбинации skip connection и batch/layer norm. Показывают, что нормализация критична для того, чтобы градиенты не взрывалась/затухали. Также предлагают новый блок, в котором мы применяем skip и LN несколько раз подряд, где skip всегда идёт от оригинального инпута (параметры LN зашарены).

Показывают стабильное небольшое улучшение на нескольких языках WMT-14 и на CIFAR.

Читать полностью…

DL in NLP

Rethinking Positional Encoding in Language Pre-training
Ke, He, and Liu, [Microsoft]
arxiv.org/abs/2006.15595

Последнее время видно всё больше статей, которые пытаются разобраться в том, как работает / как улучшить positional encoding в трансформерах. В этой статье авторы рассуждают, что трансформер улавливает корреляции между словами и между позициями слов. Предлагают модифицировать архитекутуру, чтобы явно разделить эти две штуки. Если по классике на вход в attention приходит word emb + pos emb, то авторы предлагают считать два attention: число для word и чисто для pos, а потом их скоры (перед софтмаксом) складывать. Второй хак, который придумали авторы: это убрать из векторов CLS-токена информацию об абсолютных позициях: просто заменив в positional scores скоры CLS на выучиваемую константу.

По результатам: обучили BERT с такой архитектурой, улучшили GLUE, красивые виуализации positional scores.

Было бы интересно сравнить картинки word scores с attention scores в обычном BERT, но такого в статье нету =(

Читать полностью…

DL in NLP

Яндекс.Толока проводит воркшоп на конференции VLDB 2021: https://crowdscience.ai/conference_events/vldb21

В рамках него проходит соревнование:
https://crowdscience.ai/challenges/vldb21
где участникам предлагается построить модели, которые дают лучшую speech-to-text транскрипцию.
Призовой фонд - $6000

Читать полностью…

DL in NLP

Pattern-exploiting training

Сегодня на reading group презентовал маленький обзор по методам, использующим prompts. GPT-3, PET, iPET, ADAPET, LM-BFF, p-tuning. Получилось нелпохо, держите посмотреть, не стесняйтесь что-то спрашивать в чате.

https://docs.google.com/presentation/d/1b59JIrBdIhwbz1A3yzQ_c2Rexte4xFX_0AHOtp6zkNM/edit#slide=id.p

Читать полностью…

DL in NLP

Generating Datasets with Pretrained Language Models
Schick and Schütze, [LMU Munich]
arxiv.org/abs/2104.07540

У нас есть классные генеративные языковые модели, которые могут решать (с каким-то качеством) любые NLP задачи. Но такие большие модели и в прод их не покатишь. Очевидным решением будет использовать такие модели для грязной разметки ваших данных — придумать несклько примеров и устроить few-show классификацию с помощью GPT-2/3. Schick and Schütze пошли дальше и предлагают геренировать не только лейблы, но и примеры. После чего обучать на этом модельку. К сожалению делают это только для задачи semantic similarity (было бы интересно посмотреть на NER), но результаты очень неплохи. Их моделька обходит InferSent, USE, SentenceBERT/SentenceRoBERTa на 7 датасетах.

Читать полностью…

DL in NLP

Revisiting Simple Neural Probabilistic Language Models
Sun and Iyyer [UMass Amherst]
arxiv.org/abs/2104.03474

Помните на курсе по NLP мы говорили, что просто конкатенировать эмбеддинги текста и пихать их в полносвязную сетку — это тупо и не работает? И что лучше использовать RNN/Трансфрмеры.

В общем это не совсем так. Если сделать полносвязную сетку из 16 слоёв с layer norm, dropout и skip connections, то на коротких контекстах (<20 токенов) она работает сопоставимо с трансформерами на языковом моделировании 🤯

Кажется, мне нужно будет переделать пару слайдов...

Читать полностью…
Subscribe to a channel