Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Канал о космосе и всем, что с ним связано. Админ: @TELEHAN Прайс: telega.in/c/inSpace Ещё каналы: hanmedia.me/tg
Планетологи из Германии считают, что человечеству следует сфокусировать свои усилия по поиску внеземного разума на узкой полоске ночного неба, обитатели звездных систем в которой смогут в теории увидеть то, как Земля проходит по диску Солнца.
"Мы не можем предсказать наверняка, используют ли инопланетяне те же методики поиска жизни за пределами их планеты, как и мы. Но мы можем сказать, что они будут сталкиваться с теми же физическими проблемами, что и мы, и наблюдения за проходами Земли по диску Солнца будут самым очевидным способом обнаружения человечества", — заявил Рене Хеллер из Института изучения Солнечной системы в Геттингене, Германия.
Хеллер и его коллега Ральф Пудриц предлагают искать инопланетян не случайным образом, "слушая" весь окружающий нас космос, а точечно фокусировать внимание на тех планетах и звездных системах, гипотетические жители которых могли бы нас обнаружить и уже послать нам свои сигналы.
Как рассказывают ученые, сегодня планетологи ищут планеты за пределами Солнечной системы, применяя преимущественно две методики – транзитный метод, который используется на телескопе "Кеплер", и метод лучевых скоростей, применяемый на ряде наземных приборов, вроде спектрографов HARPS в обсерваториях Нового Света.
Первый метод очень прост по своей сути – астрономы ищут планеты, наблюдая за тем, как яркость их светила периодически снижается в тот момент, когда планета закрывает его от "Кеплера" или других телескопов. Подобный способ позволяет быстро находить даже достаточно небольшие планеты размерами с Землю, а также изучать их свойства и искать следы разумной жизни на ней, наблюдая за тем, как меняется спектр светила в момент прохода ее спутницы по его диску.
Руководствуясь этой идеей, авторы статьи попытались определить, какие жители каких звездных систем в ближайших окрестностях Земли, удаленные от нас на расстояние не более чем в 3,2 тысячи световых лет, смогли бы в принципе увидеть то, как наша планета проходит по диску Солнца.
Как показали расчеты, таких звезд достаточно много – около 10 тысяч светил, теоретически способных поддерживать жизнь в том виде, в котором она существует на поверхности нашей планеты. Около ста из них принадлежат к числу желтых и оранжевых карликов, похожих на Солнце. Пока подавляющее большинство звезд из этого списка так и не было изучено, однако недавно запущенный зонд GAIA должен каталогизировать и изучить их в ближайшие 5 лет.
Жители всех этих планет, если они существуют, должны были увидеть проходы Земли по диску Солнца, как показывают расчеты Хеллера и Пудрица, достаточно давно, и понять по сдвигам в спектре нашего светила, что на третьей планете этой звездной системы есть разумная жизнь. Часть из них, как и земляне, могли попытаться связаться с обнаруженными "инопланетянами".
По этой причине авторы статьи предлагают обратить внимание Института поиска внеземных цивилизаций SETI и недавно открытой инициативы Breakthrough Listen на узкую полосу на небе, где расположены эти звезды, для того, чтоб
Теория полета на Луну. Публикация в журнале LIFE, 1949 год.
Читать полностью…✅Economika – мощнейший информационный проект в Telegram о финансах и экономике. Современно, актуально и кратко. Наш бот - Ваш личный финансовый помощник и советник.
📢 @economika
📡 @economika_bot
ру дней на орбите планеты.
Тем не менее, если вы построите очень большой, широкоугольный телескоп и отправите его на орбиту планеты, вы сможете разобрать и людей. Enterprise-D из «Звездного пути» имел главную тарелку в 500 метров диаметром, и разрешение его было в 150 раз выше, чем у космического телескопа Хаббл. В принципе, мы могли бы разобрать отдельных людей и в инфракрасном диапазоне, если бы собрали достаточно света. Так что, если знать, где искать, возможно, внеземные гости однажды нас найдут. Или мы — кого-нибудь.
Можно ли обнаружить признаки жизни на Земле из космоса?
«Сканирование на предмет признаков жизни» — известный штамп научной фантастики. Насколько далеко такое сканирование от реальных научных методов? Мог бы космический аппарат инопланетян обнаружить «признаки жизни» на планете на фоне далекого и шумного теплового фона? Или если бы разумные цивилизации искали такую же разумную жизнь, не было бы легче искать обычное радиоизлучение?
Эх, «признаки жизни». Пожалуй, франшиза «Звездный путь» несет ответственность за эту фразу: любую планету, к которой подходили близко, сканировали в поисках признаков жизни. Иногда искали признаки разумной жизни, иногда даже человеческой (или особых инопланетных видов). К сожалению, непонятно, что именно они делали, а в техническом справочнике «Звездного пути» есть короткий параграф с техноболтологией, разъясняющей этот процесс.
«Анализ удаленных форм жизни. Сложный массив заряженных кластерных кварковых резонансных сканеров обеспечивает подробные биологические данные на орбитальных расстояниях. При использовании в сочетании с датчиками оптического и химического анализа, программное обеспечение анализа форм жизни способно экстраполировать общую структуру биоформы и выводить основной химический состав».
«Заряженные кластерные кварковые резонансные сканеры» — это вообще бред, если под «заряженным кластером кварков» не подразумевается обычный протон. Так что метод «Звездного пути» придется отринуть. И хотя прослушивание радиопередач определенно работает (вообще, на этом сосредоточена львиная доля наших поисков жизни за пределами Земли), степень успеха этого метода будет зависеть от того, насколько вообще распространено радио (используют они радио или же предпочитают передавать информацию по оптоволокну? Достаточно ли они развиты для распространения радио?), и времени, которое вы потратите на прослушку.
Люди начали использовать радио повсеместно лишь в 1920-х годах, но до этого времени на планете было множество разумных и современных людей. Институт SETI слушает достаточно времени — у него даже есть отдельно предназначенный для этого телескоп. Но ничего не нашел, конечно. При этом общее число радиопередач (и даже общая мощность радиовещания) стабильно снижалась в течение десятилетия. С другой стороны, если у вас уже есть исследующий галактику космический аппарат, вы можете искать жизнь, которая не использует радио в настоящий момент.
Мы не сможем точно определить, что вот в этом маленьком городке живет 3000 человек — мы лишь можем увидеть (с тепловизионными или другими методами) отметины, которые оставляет жизнь на поверхности планеты. Мы возьмем за основу людей и Землю, поскольку у нас нет никаких других примеров, но имеются кратеры на планете. Мы живем в городах, которые легко различить, ведь мы рубим деревья для их постройки и зажигаем в них свет по ночам. Мы строим дороги между городами и дома для жизни, а также работаем в поле.
Как много изменений поверхности планеты, вызванных людьми, можно разглядеть из космос
Пятимерная чёрная дыра бросает вызов общей теории относительности.
Модель показывает, что на очень тонком "чёрном кольце" могут появляться выросты, разделённые перемычками, которые со временем разделятся и образуют несколько небольших чёрных дыр, лишённых горизонта событий.
Вот уже сто лет представления учёных об устройстве Вселенной основываются на общей теории относительности Альберта Эйнштейна, согласно которой гравитация представляет собой искривление материей пространственно-временного континуума. Это положение позволяет оценивать возраст звёзд и с уверенностью полагаться на системы глобального позиционирования и навигации.
Казалось бы, за столь долгий срок расчёты великого физика должны были выдержать все вызовы. Однако во Вселенной есть места, где общая теория относительности перестаёт действовать. Сингулярность – область внутри чёрной дыры, где гравитация настолько велика, что все наши представления о пространстве, времени и законах физики рушатся.
Чёрные дыры стали для физиков настоящим кошмаром, и единственным утешением служит то, что они скрываются за горизонтом событий, из пределов которого не может вырваться ничего, включая свет и радиоволны, а следовательно, их крайне сложно изучить. Получается, что чёрные дыры фактически вырезаны из нашей Вселенной "космической цензурой", и многие учёные предлагают просто не обращать на них внимания, как на несуществующие для любых практических целей объекты.
"Гипотеза "космической цензуры" гласит, что пока сингулярность остаётся скрытой за горизонтом событий, она не вступает в противоречие с общей теорией относительности, – говорит в пресс-релизе один из авторов нового исследования Маркус Кунеш (Markus Kunesch) из Кембриджского университета. – До тех пор пока действует эта гипотеза, можно смело предсказать будущее Вселенной за пределами чёрных дыр, что мы и пытаемся сделать в физике в настоящее время".
Но если предположить, что сингулярность может существовать за пределами горизонта событий, она будет представлять собой объект, стремящийся к бесконечной плотности, который можно будет наблюдать со стороны. И пока телескопы не наблюдают ничего подобного в окрестностях нашей галактики, физики-теоретики предположили, что такая "голая сингулярность" может скрываться в неизвестных нам измерениях.
"Если окажется, что голая сингулярность существует, это полностью разрушит общую теорию относительности, потому что она потеряет всякую предсказательную силу и не сможет более объяснять устройство Вселенной", – говорит другой соавтор работы Саран Туниасувунакул (Saran Tunyasuvunakool).
Теория Эйнштейна ничего не говорит о том, в скольких измерениях существует наша Вселенная. Мы воспринимаем окружающий мир в трёх измерениях, которые в дополнении с четвёртой величиной – временем, образуют полотно пространства-времени, колебания которого поймали детекторы обсерватории LIGO. Но, например, согласно теории струн, может существовать до 11 измерений, одни из которых проявляют себя в масштабах космоса, а другие
На кону Твоя ЖИЗНЬ❗️
Нужно обезвредить бомбу 💣
❌КРАСНЫЙ❌ 👈
или
❎ЗЕЛЕНЫЙ❎ 👈
Жми и узнай результат❗️
Хаббл представил результаты своей работы на конференции Американского астрономического сообщества.
Это выступление дало начало новому периоду в истории астрономии — ученые «переоткрывали» туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого Хаббла — например, открытие красного смещения. Число известных галактик росло с постройкой новых телескопов и запуском новых — например, начала широкого применения радиотелескопов после Второй Мировой.
Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера Земли препятствует даже самым большим телескопам получить точную картину — газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты Вселенной. Но ученые сумели обойти эти ограничения, запустив космический телескоп «Хаббл», названный в честь уже знакомого вам астронома.
Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых — и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых «Хабблу» — это минимум десятая часть от их настоящего количества.
Финальный подсчет
И все же, сколько именно галактик существует во Вселенной? Сразу предупрежу, что считать придется нам вместе — такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики — но лишь для более глобальных целей вроде изучения крупномасштабной структуры Вселенной.
Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой Вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов — куда меньше, чем существует галактик на самом деле.
Для определения примерного числа возьмем какое-то из высокоточных изучений космоса — например, «Ultra Deep Field» телескопа «Хаббл» от 2004 года. На участке, равному 1/13000000 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности «Хаббла» мы видим 130 миллиардов галактик со всей Вселенной.
Однако это еще не все. После «Ultra Deep Field» было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует «Хаббл», но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов световых лет нам доступно 7 триллионов 375 миллиардов галактик.
Но это, опять-таки, минимальная о
😂 GIFOTOP😅
✅The best GIFs channel / Лучший канал ГИФок в телеграмме!
👉🏻click JOIN // ПОДПИСАТЬСЯ📛
10 величайших астрономических открытий всех времен.
Тысячи лет назад человек впервые взглянул в небо и, честно говоря, не понял ничего. Возможно, он увидел там бога. Возможно, комету. Пусть разбираются историки. Прошли тысячи лет, и человек снова взглянул в небо — уже с помощью, например, космического телескопа Хаббла. Он увидел там мириады звезд, квинтиллионы планет, гигантские расстояния и… ничего (темную материю, то есть). Мы быстро учимся. Космический телескоп Джеймса Вебба будет в 100 раз мощнее Хаббла и покажет еще больше. Но что-то мы открыли и без него.
Млечный путь и красное собственное свечение атмосферы в Костроме, Мантуровский р-он, дер. Медведево, 09 апреля 2015 год.
Читать полностью…🐰 GIFOTOP 😅
✅The best
✅the funniest
gifs collection in Telegram👅 😎
👉click FOLLOW📛📛
Черная точка, чуть ниже центра (выделенная кругом) - это Меркурий на фоне Солнца
Читать полностью…Туманность «Тухлое яйцо» она получила свое название из-за его относительно высокого содержания серы.
Изображение: Джуди Шмидт
Чему же учит нас это мысленное путешествие? Тому, что люди — эмоционально ранимые, легковерные, безнадёжно невежественные повелители ничтожно малого клочка Вселенной, не имеющего ни малейшего значения.
А теперь бегите играйте.
— Нил Деграсс Тайсон, «Смерть в чёрной дыре и другие космические трудности»
а — зависит от разрешения вашей камеры. От того, насколько мелкий объект вы можете различить. Разрешение картинки зависит от трех вещей: насколько вы близко к предмету интереса, на какой длине волны вы смотрите и как много длин волн этого света вы можете разобрать с помощью своего телескопа. Для составления тепловой карты мы смотрим в инфракрасном спектре хотя бы с орбиты планеты — и много ли можно разглядеть в инфракрасном?
Мы можем увидеть в целом, что полюса нашей планеты холодные, а экватор теплее, но при таком разрешении никаких деталей особо не разглядишь. Городов не видно, не говоря уж об отдельных людях. Мешает этому комбинация длины волны (инфракрасный свет обладает более длинной волной, чем видимый, поэтому разрешение падает), дистанции от спутника до планеты (порядка 700 километров) и размер поверхности сбора на спутнике.
Можно наметить города с помощью тепловых измерений; если вы не в пустыне, плотные города будут теплее окружающей среды — частично оттого, что мы вырубили деревья, чтобы построить город; кроме того, мы выстилаем дорогу поглощающим тепло асфальтом. Если в городе посажено много деревьев, «тепловой островок» города будет менее очевидным. Разрешение этих снимков примерно 30 метров — слишком много, чтобы обнаружить отдельных людей. Разрешение обусловлено частично диаметром зеркала на спутнике — 16 дюймов (не особо большое, но сгодится).
Если вам просто нужно высокое разрешение, лучше всего обзавестись очень большим зеркалом и камерой (увеличение области сбора = лучше разрешение) или переключиться на оптический диапазон, но плотный покров облаков будет вам мешать во втором случае. На Земле наш облачный слой не особо толстый, не особо горячий и передвигается время от времени, так что если достаточно долго ждать, можно будет разглядеть, что там на Земле, но с Венерой такой фокус не пройдет.
На Земле же пройдет; коммерческие спутники на орбите Земли делают снимки планеты с разрешением до полуметра. (Или с таким разрешением, с каким им позволяют различные военные структуры; сверхвысокое разрешение при съемке земной поверхности используется для военной разведки). Имея оптические данные в высоком разрешении, можно разглядеть геометрические узоры. Идеальные круги, квадраты, прямоугольники и треугольники редко встречаются в природе, так что если вы увидите кучу прямоугольников на поверхности Земли, это гарантирует наличие хорошо спланированного города или фермы, то есть указывает на существование чего-то разумного.
Конечно, чем дальше вы от планеты, тем сложнее разглядеть ее в оптическом диапазоне — это явно не то сканирование, которое можно провести, пролетая через галактику на высокой скорости. Чтобы составить карту целой Земли с низким разрешением (от 250 до 1000 метров), инструменту MODIS в числе четырех орбитальных спутников на высоте 130 километров от поверхности Земли требуется два дня. Так что возможно обнаружить признаки жизни на планете по тепловым снимкам, если искать города, а не людей, и если вы готовы покружить па
❤️Загадка, которую отгадывает 1 из 10 человек.
На берегу моря был камень. На камне было написано слово из 8 букв. Когда богатые читали это слово, они плакали, бедные радовались, а влюбленные расставались. Что это было за слово?
УЗНАТЬ ОТВЕТ
находятся на квантовом уровне и могут быть обнаружены только в экспериментах с очень высокими энергиями, как те, что проводятся на Большом адронном коллайдере в ЦЕРН.
Кунеш, Туниасувунакул и их коллеги с помощью суперкомпьютера COSMOS смоделировали, как чёрная дыра будет вести себя в пятимерном пространстве. Такие объекты уже были описаны теоретиками в 2002 году, но только сейчас их динамика была исследована на модели.
Учёные обнаружили, что в большинстве случаев такая чёрная дыра представляет собой сферу, окружённую горизонтом событий, и ничем не отличается от тех, что существуют в нашей Вселенной. Но иногда на ранних стадиях формирования образуется тонкое "чёрное кольцо". Эта структура крайне нестабильна и чаще всего должна сворачиваться всё в ту же сферу. Но если кольцо очень тонкое, на отдельных его участках будут расти более плотные выпуклости. В конечном итоге перемычки между этими сгустками порвутся, и кольцо распадётся на несколько небольших чёрных дыр без горизонта событий, которые и будут представлять собой видимую "голую сингулярность".
Если такая модель может реализоваться в реальном мире, и учёные когда-нибудь смогут наблюдать объект, сжимающийся к бесконечной плотности, это нарушит все наши представления об устройстве Вселенной, потому что в физике, если оказывается неверным один закон, он тянет за собой все остальные.
Исследователи склоняются к мнению, что теория "космической цензуры" верна для нашего четырёхмерного пространства-времени. Но если она будет опровергнута в других измерениях, потребуется альтернативная гипотеза, объясняющая устройство Вселенной. И одним из кандидатов на пост Теории всего является теория квантовой гравитации, которая хоть и не объясняет сингулярность, но дарует нам новую физику, которая гораздо точнее описывает сингулярность, чем расчёты Эйнштейна.
ценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов — 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту Солнца выйдет телескоп «Джеймс Уэбб». Этот аппарат за минуты достигнет туда, куда «Хаббл» пробирался днями, и проникнет еще дальше в глубины Вселенной.
Читать полностью…Сколько галактик во Вселенной?
Совсем недавно, в 1920 годах, знаменитый астроном Эдвин Хаббл сумел доказать, что наш Млечный путь — это не единственная существующая галактика. Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во Вселенной находится рядом с нами? Сегодня мы найдем ответ на этот вопрос.
От одной до бесконечности
Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш Млечный Путь метагалактикой — объектом, покрывающим собой всю обозримую Вселенную. Их заблуждение вполне логично объяснялось несовершенством телескопов того времени — даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями. Считалось, что из них со временем формируются звезды и планеты, как сформировалась когда-то наша Солнечная система. Эту догадку подтвердило обнаружение первой планетарной туманности в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же облаками пыли и газа, звезды в которых еще не успели образоваться.
Первые шаги
Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям Парсонс построил исполинский для тех времен телескоп «Левиафан», размер которого приближался к двум метрам. Желая доказать, что «туманности» на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким звездным скоплениям.
Однако споры продлились аж до XX века. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме Млечного Пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность — галактику Андромеды.
В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900–1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, «слипшимися» в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.
Современная картина
В 1924 году, пользуясь телескопом-рекордсменом начала столетия, Эдвину Хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к Млечному Пути (притом, что оценка Хаббла была в три раза меньше современной). Еще астроном обнаружил в «туманности» множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег,
В научной статье, опубликованной в журнале Nature, ученые сообщают о том, что благодаря полученным с помощью телескопов данным они смогли обнаружить, что наша галактика является неотъемлемой частью галактического сверхскопления. Это скопление настолько огромно, что ученые, которые составили его карту, дали ему название Laniakea, что с гавайского означает «необъятные небеса».
Среди описываемых журналом Nature деталей говорится о том, что сверхскопления являются одними из самых больших структур во всей Вселенной. Галактики распределяются во Вселенной совсем не беспорядочно. Они образуются в группы, которые называются скоплениями (кластерами), и проведенные исследования этих скоплений показывают, что хотя каждую из галактик той или иной группы можно отделить друг от друга, границы между ними очень неясные, что могло бы говорить о том, что они являются одной частью данной группы.
В свою очередь, огромные галактические скопления поделены на более мелкие группы из нескольких десятков галактик. Ученые приводят аналогию, говоря о том, что распределение галактик в некоторой степени похоже на города и страны, где каждый объект в общем и целом является частью более крупной группы (город-область-страна).
«Мы наконец-то смогли определить контуры галактического сверхскопления, которое мы можем назвать своим домом», — говорит Р. Брент Трулли, астроном из Гавайского университета в Маноа.
«Это как если бы вы впервые обнаружили, что ваш родной город на самом деле является частью куда большей группы, являющейся страной и граничащей с другими такими же странами», — приводит аналогию ученый.
Учеными было установлено, что Laniakea, галактическое сверхскопление, в котором находится наша галактика, простирается на более 500 миллионов световых лет. Более того, по приблизительным меркам, масса сверхскопления, в котором в общей степени находится более 100 000 различных галактик (включая Млечный Путь), равна массе 100 миллионов миллиардов Солнц. Что касается расположения нашей родной галактики, то она находится на задворках галактического сверхскопления.
Астрономы из Национальной радиоастрономической обсерватории (США) и их коллеги объясняют, что для документирования существования галактического сверхскопления Laniakea они использовали телескопы. На базе собранных данных они смогли создать трехмерную карту движения галактик. Само же движение галактик вызывается гравитационными силами находящихся возле них межгалактических структур.
В общем и целом ученые проанализировали движение 8 тысяч галактик. Собранные данные помогут исследователям лучше понять распределение гравитационных сил во Вселенной.
Наука и Техника - 🔥❗️Самый известный журнал о Науке и Технике! 👍Подпишись✅
«Атеист» - 🔥❗️Канал для тех, кто думает своей головой 👍Подпишись✅
The Brains - 🔥❗️Канал "The Brains" - прокачай свои мозги! 👍Подпишись✅
Полезное образование - 🔥❗️Самые полезные знания собранные в одном месте! 👍Подпишись✅
«Зигмунд Фрейд» - 🔥❗️Фрейдизм. Зи́гмунд Фрейд австрийский психолог, психиатр и невролог. 👍Подпишись✅
Skillon - 🔥❗️Школа саморазвития, лучший способ провести время с пользой! 👍Подпишись✅
Empire History - 🔥❗️Хроники ушедшего времени 👍Подпишись✅
Это интересно! - 🔥❗️Познавательный канал о самом интересном. 👍Подпишись✅
Historygram Russia - 🔥❗️Лучший исторический канал с самыми интересными картинками 👍Подпишись✅
Brain Teasers - 🔥❗️Самые интересные головоломки каждый день! 👍Подпишись✅
History Porn - 🔥❗️History Porn - есть такой термин, которым обозначают редкие исторические снимки , на которые смотрят подолгу и с придыханием ! 👍Подпишись✅
Сила Мышления - 🔥❗️Канал по бизнесу, успеху и мотивации. 👍Подпишись✅
🎞 Rutor.org - 🔥❗️Крупнейший торрент-трекер теперь и в Telegram. 👍Подпишись✅
YUMMY - 🔥❗️Лучшие рецепты 🍗🍕🍰🍲 👍Подпишись✅
ХОЧУ ЗНАТЬ ВСЕ! - 🔥❗️Канал для леньтяев,которым тяжело открыть книгу📚 👍Подпишись✅
ТИПИЧНЫЙ МИЛЛИАРДЕР - 🔥❗️Шикарная жизнь миллиардера 🤑 👍Подпишись✅
#tmnvp
@abouttelega — авторский блог о каналах, ботах и админах в Telegram.
Читать полностью…лго живут эти вкрапления, не говоря уж о процессах, посредством которых они могли бы нагревать корону. Даже если ответ на вопрос кроется в этом, никто не знает, что заставляет эти случайные вкрапления магнетизма вообще появляться.
Черная дыра Эридана
Hubble Deep Space Field - это снимок, полученный телескопом Хаббла, на котором запечатлены тысячи удаленных галактик. Однако, когда мы смотрим в "пустой" космос в области созвездия Эридан, мы ничего не видим. Вообще. Просто черную пустоту, растянувшуюся на миллиарды световых лет. Почти любые "пустоты" в ночном небе возвращают снимки галактик, хоть и размытых, но существующих. У нас есть несколько методов, которые помогают определить то, что может быть темной материей, но и они оставляют нас с пустыми руками, когда мы смотрим в пустоту Эридана.
Одна спорная теория говорит о том, что пустота содержит сверхмассивную черную дыру, вокруг которой вращаются все ближайшие галактические скопления, и это высокоскоростное вращение совмещается с "иллюзией" расширяющейся вселенной. Другая теория говорит о том, что вся материя когда-нибудь склеится вместе, образовав галактические скопления, а между скоплениями со временем образуются дрейфующие пустоты.
Но это не объясняет вторую пустоту, обнаруженную астрономами в южном ночном небе, которая на этот раз примерно 3,5 миллиарда световых лет в ширину. Она настолько широка, что ее с трудом может объяснить даже теория Большого Взрыва, поскольку Вселенная не существовала настолько долго, чтобы такая огромная пустота успела сформироваться путем обычного галактического дрейфа. Может, когда-нибудь все эти загадки мироздания станут просто семечками в стакане, но не сегодня и не завтра.