Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Канал о космосе и всем, что с ним связано. Админ: @TELEHAN Прайс: telega.in/c/inSpace Ещё каналы: hanmedia.me/tg
х атомов, могут свободно уместиться многие миллиарды атомных ядер и отдельных электронов. При этом расстояния между частицами вопреки высокой плотности будут всё ещё велики по сравнению с их размерами. Вот почему вещество, плотность которого в центре Солнца в 100 раз превышает плотность воды, – более плотное, чем любое твёрдое тело на Земле! — тем не менее, обладает всеми свойствами идеального газа.
Температура внутри звезды тем ниже, чем больше концентрация частиц в газе, т. е. чем меньше его средняя молекулярная масса. Средняя молекулярная масса газа, состоящего из атомов водорода, равна 1, из атомов гелия – 4, натрия – 23, железа – 56. В ионизованном газе число частиц увеличивается за счёт электронов, а общая масса вещества сохраняется неизменной. Поэтому молекулярная масса ионизованного водорода будет 1/2 (две частицы: протон и электрон), ионизованного гелия – 4/3, натрия – 23/12 = 1,92, железа – 56/27 = 2,07. Таким образом, в звёздном веществе все химические элементы, за исключением водорода и гелия, имеют среднюю молекулярную массу, равную примерно 2.
Чем больше водорода и гелия по сравнению с более тяжёлыми элементами, тем ниже температура в центре звезды. Чисто водородное Солнце, например, имело бы температуру в центре 10 млн. градусов, гелиевое 26 млн. градусов, а состоящее целиком из более тяжёлых элементов – 40 млн. градусов.
Чтобы получить представление о структуре звезды, пользуются методом последовательных приближений. Задавая некоторое соотношение водорода, гелия и более тяжёлых элементов и зная массу звезды, вычисляют её светимость. Эту процедуру повторяют до тех пор, пока для определённой смеси вычисленная и полученная из наблюдений светимости не совпадут. Данный состав и считается близким к реальному. Оказалось, что для большинства звёзд на долю водорода и гелия приходится не менее 98% массы.
Определение химического состава и физических условий в центральных частях звёзд позволило решить вопрос об источниках звёздной энергии. При температуре 10-30 млн. градусов и наличии большого числа ядер водорода протекают термоядерные реакции, в результате образуются ядра различных химических элементов. Не все возможные ядерные реакции годятся на роль источников звёздной энергии, а только такие, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды.
После длительных поисков было установлено, что звёзды большую часть своей жизни светят за счёт совершающихся в них преобразований четырёх ядер водорода (протонов) в одно ядро гелия. Масса четырёх протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идёт медленно и поддерживает свечение звезды на протяжении миллиардов лет.
Звёзды образуются из космических газопылевых облаков. При сжатии под действием тяготения сгустка газа его внутренняя часть постепенно разогревается. Когда температура в центре достигнет примерно миллиона градусов, начинаются ядерные реакции — образует
Звезда снаружи и внутри
Древние считали что звезды – нечто вечное и постоянные, хотя и наблюдали за некоторыми изменение их светимости. На сегодняшний день уже достоверно известно, что не все звезды одинаковы. Более того они тоже эволюционируют. Их жизнь можно сравнить с жизнью человека.
И всегда все начинается с рождения и заканчивается смертью. Но смерть звезды это нечто другое – после смерти она дает энергию и материал для рождения новых звезд. Так что еще раз можно убедиться в справедливости выражения: «Ничто не вечно…»
Чтобы лучше изучить строение ученым понадобилось очень много времени. Как говорилось в одной из статей: наша система находится в относительно спокойной части галактики. А ближайшей к нам звездой, за которой можно было так или иначе наблюдать, было Солнце. Но даже сейчас можно только с определенной точностью говорить о внутреннем строении звезд.
Для анализа развития звезды очень важно знать ее внутреннюю структуру. Фактически, зная состав можно предположить как будут со временем изменятся внешние параметры такого небесного тела. К внешним параметрам можно отнести, конечно же, размер, массу и светимость.
Давайте попробуем выяснить, какие же процессы протекают в глубинах звездной массы.
Теперь на помощь астрономам приходят химики и физики. Внутреннее строение – это химический состав, смесь газов, которые образуют ту или иную звезду. Но даже такой простой вопрос может вызвать множество вариантов ответов. Ведь мы можем наблюдать только внешние слои звезд, которые принято называть атмосферой. Внутреннее строение нам недоступно – ни увидеть, ни проникнуть в глубь звезды мы, увы, не можем. Прежде всего, нам препятствует температура, даже известные фантасты не предлагали человечеству такой материал, чтобы он мог выдержать столь значительный нагрев, а тем более защитить от него человека.
Приходится применять не прямые методы изучения: компьютерное моделирование, лабораторные условия, математические расчеты, физико-химическое моделирование. А знать нам нужно не так уж много – температуру, плотность, давление и химический состав звезды.
Как же поступают современные ученые? Это очень просто – применяются известные законы физики и механики для определения необходимых параметров по данным, полученным об атмосферах звезд. И ко всему, считается, что звезды состоят из таких же химических элементов, которые встречаются на Земле. И вот нам и пригодятся все знания в области химии для моделирования процессов, происходящих в недрах звезд. Лабораторные условия исследования, конечно, далеко не соответствуют реальным, но так можно узнать очень многое. Элементарные частицы одинаковы во всей вселенной – протоны, электроны и нейтроны – их свойства должны быть одинаковы, хотя не исключено, что могут встречаться и аномалии.
Наблюдения показывают, что большинство звёзд устойчивы, т. е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действу
их друг от друга. И это доказано. Cколько темной энергии нужно, чтобы преодолеть гравитацию? Ее объем в числовом выражении выглядит так: 128 нулей после запятой, а в конце число 138. Сегодня это основной вопрос физики. Откуда взялось такое число? Если Больших взрывов было много, и каждая Вселенная имеет свое количество темной энергии, это просто значит, что в нашей Вселенной ее объем таков.
Наша Вселенная будет становиться все более разреженной и непригодной для жизни. Жизнь — это вообще очень проходящее явление. Она может исчезнуть в пустоте времени и пространства. Но если существуют другие вселенные, то в них есть жизнь. Жизнь здесь может погибнуть, но вновь возникнет в других Вселенных.
Вселенные могут столкнуться, и это провоцирует колебания. Если мы найдем их, это будет самый знаменательный момент в истории, который докажет, что мы не одни. Но нельзя перейти из одной Вселенной в другую. Мы же попадем во времена Большого взрыва.
Во времена Ньютона существовала физика, которую ты держал в руке. Сегодня мы далеко ушли от этого. Однажды мы можем столкнуться с тем, что чего-то в принципе не сможем понять. Возможно, мы просто недостаточно умны. Собаку можно научить многому, но вы никогда не сможете объяснить ей теорию относительности. Хотя, может быть, сейчас какой-нибудь пес сидит и смеется надо мной.
— Брайан Грин
Радиогалактики
Еще в 1946 г. на заре радиоастрономии была открыта первая галактика, являющаяся исключительно мощным источником радиоизлучения. Это - знаменитый объект Лебедь A. В настоящее время число известных занесенных в каталог радиоисточников, находящихся в Метагалактике, превосходит уже 10000. Все они являются галактиками, по каким-то причинам сильно излучающими в радиодиапазоне. Такие объекты получили название «радиогалактик». Наша Галактика также излучает радиоволны, но мощность этого излучения («радиосветимость») у нее в десятки и сотни тысяч раз меньше, чем у радиогалактик. Вообще следует заметить, что все галактики излучают в той или иной степени радиоволны. У радиогалактик, однако, этот процесс выражен особенно сильно.
Как надежно установлено, непосредственной причиной радиоизлучения и «нормальных» галактик (вроде нашей), и «радиогалактик» является наличие там огромного количества космических лучей, которые движутся в более или менее сильных межзвездных магнитных полях. Центральным вопросом является происхождение этих космических лучей. Если в нашей Галактике они образуются при «расплывании» в межзвездной среде туманностей - остатков вспышек сверхновых, то в случае радиогалактик дело обстоит иначе. Сверхновых звезд там явно не хватает для того, чтобы образовать очень уж большое количество космических лучей. Последние образуются при гораздо более мощных процессах взрывного характера, происходящих в ядрах в периоды их высокой активности. Обычно релятивистские частицы выбрасываются из ядер в виде двух огромных облаков, разлетающихся в разные стороны и сравнительно быстро (за «какие-нибудь» сотни тысяч лет) покидающих пределы галактики. В конце концов они рассеиваются в межгалактическом пространстве. Наблюдаются случаи, когда около галактики видны два "старых", весьма протяженных, почти расплывшихся облака и одновременно по обе стороны ядра два небольших, очень ярких, «молодых» облака. Это наглядно демонстрирует «циклический» характер активности ядер.
И. С. Шкловский, астрофизик, - «Вселенная, жизнь, разум».
Безлунной ночью, когда «звезды выглядят очень холодными на небе» и заметны только облака — светящиеся пятна Млечного пути, отъедьте в место, менее загрязненное уличным освещением, лягте на траву и пристально поглядите на небо. При первом взгляде Вы замечаете созвездия, но узоры созвездий означают не больше, чем пятно сырости на потолке ванной. Заметьте в связи с этим, как мало смысла говорить что-то вроде «Нептун переходит в Водолея». Водолей — это разнородная группа звезд, все на разном расстоянии от нас, которые не связаны друг с другом, за исключением того, что они составляют (бессмысленный) рисунок, когда видны из определенного (не особо знаменательного) места в галактике (отсюда). Созвездие — не структура вообще, и поэтому не является вещью, о которой можно разумно сказать, что «в нее» переходит Нептун или что-либо еще.
© Ричард Докинз "Расплетая радугу. Наука, заблуждения и тяга к чудесам"
их друг от друга. И это доказано. Cколько темной энергии нужно, чтобы преодолеть гравитацию? Ее объем в числовом выражении выглядит так: 128 нулей после запятой, а в конце число 138. Сегодня это основной вопрос физики. Откуда взялось такое число? Если Больших взрывов было много, и каждая Вселенная имеет свое количество темной энергии, это просто значит, что в нашей Вселенной ее объем таков.
Наша Вселенная будет становиться все более разреженной и непригодной для жизни. Жизнь — это вообще очень проходящее явление. Она может исчезнуть в пустоте времени и пространства. Но если существуют другие вселенные, то в них есть жизнь. Жизнь здесь может погибнуть, но вновь возникнет в других Вселенных.
Вселенные могут столкнуться, и это провоцирует колебания. Если мы найдем их, это будет самый знаменательный момент в истории, который докажет, что мы не одни. Но нельзя перейти из одной Вселенной в другую. Мы же попадем во времена Большого взрыва.
Во времена Ньютона существовала физика, которую ты держал в руке. Сегодня мы далеко ушли от этого. Однажды мы можем столкнуться с тем, что чего-то в принципе не сможем понять. Возможно, мы просто недостаточно умны. Собаку можно научить многому, но вы никогда не сможете объяснить ей теорию относительности. Хотя, может быть, сейчас какой-нибудь пес сидит и смеется надо мной.
— Брайан Грин
Радиогалактики
Еще в 1946 г. на заре радиоастрономии была открыта первая галактика, являющаяся исключительно мощным источником радиоизлучения. Это - знаменитый объект Лебедь A. В настоящее время число известных занесенных в каталог радиоисточников, находящихся в Метагалактике, превосходит уже 10000. Все они являются галактиками, по каким-то причинам сильно излучающими в радиодиапазоне. Такие объекты получили название «радиогалактик». Наша Галактика также излучает радиоволны, но мощность этого излучения («радиосветимость») у нее в десятки и сотни тысяч раз меньше, чем у радиогалактик. Вообще следует заметить, что все галактики излучают в той или иной степени радиоволны. У радиогалактик, однако, этот процесс выражен особенно сильно.
Как надежно установлено, непосредственной причиной радиоизлучения и «нормальных» галактик (вроде нашей), и «радиогалактик» является наличие там огромного количества космических лучей, которые движутся в более или менее сильных межзвездных магнитных полях. Центральным вопросом является происхождение этих космических лучей. Если в нашей Галактике они образуются при «расплывании» в межзвездной среде туманностей - остатков вспышек сверхновых, то в случае радиогалактик дело обстоит иначе. Сверхновых звезд там явно не хватает для того, чтобы образовать очень уж большое количество космических лучей. Последние образуются при гораздо более мощных процессах взрывного характера, происходящих в ядрах в периоды их высокой активности. Обычно релятивистские частицы выбрасываются из ядер в виде двух огромных облаков, разлетающихся в разные стороны и сравнительно быстро (за «какие-нибудь» сотни тысяч лет) покидающих пределы галактики. В конце концов они рассеиваются в межгалактическом пространстве. Наблюдаются случаи, когда около галактики видны два "старых", весьма протяженных, почти расплывшихся облака и одновременно по обе стороны ядра два небольших, очень ярких, «молодых» облака. Это наглядно демонстрирует «циклический» характер активности ядер.
И. С. Шкловский, астрофизик, - «Вселенная, жизнь, разум».
Безлунной ночью, когда «звезды выглядят очень холодными на небе» и заметны только облака — светящиеся пятна Млечного пути, отъедьте в место, менее загрязненное уличным освещением, лягте на траву и пристально поглядите на небо. При первом взгляде Вы замечаете созвездия, но узоры созвездий означают не больше, чем пятно сырости на потолке ванной. Заметьте в связи с этим, как мало смысла говорить что-то вроде «Нептун переходит в Водолея». Водолей — это разнородная группа звезд, все на разном расстоянии от нас, которые не связаны друг с другом, за исключением того, что они составляют (бессмысленный) рисунок, когда видны из определенного (не особо знаменательного) места в галактике (отсюда). Созвездие — не структура вообще, и поэтому не является вещью, о которой можно разумно сказать, что «в нее» переходит Нептун или что-либо еще.
© Ричард Докинз "Расплетая радугу. Наука, заблуждения и тяга к чудесам"
Где самые крутые патриотические арты и политические карикатуры? Только в Чебурашке. Мастерской карикатуры.
Заходи! Смотри! Рассказывай друзьям!
https://telegram.me/joinchat/BtZ21jy-3snSldbAV71Jpw
ся полезнее, если им удастся решить проблему с расстоянием и открыть возможности по передаче сигналов до других планет.
Читать полностью…💥Присоединяйся к первой пошаговой PvP-игре в Telegram!
http://telegram.me/kbgamebot?start=c2u31p0
Псс! 💰10 золота на халяву, если зайдешь к нам сегодня по промо-коду BLOOD! 😎
На МКС установлена настоящая космическая кофеварка, разработанная Lavazzа специально для условий невесомости. Для приготовления кофе используются капсулы, через которые под давлением проходит нагретая вода. Готовый напиток поступает в специальный пакетик, который заменяет чашки.
В отличие от обычных кофеварок, космическая снабжена стальными трубками для подачи воды. Они могут выдерживать давление в несколько сот бар, чтобы направлять воду в невесомости в нагревательный отсек кофе-машины.
Чашки для космического эспрессо представляют собой сложнейшую механическую систему. Сама форма чашек и расположенная внутри сеть капилляров и направляет жидкость по нужному руслу, не давая ей проливаться. Только в момент прикосновения губами к краю чашки для совершения глотка жидкость устремляется навстречу по мелким трубкам.
-🔴 Хочешь узнать больше о животных?
Это например -🐱 Сервал - экзотический представитель семейства кошачих.
Больше животных тут - Animals & Nature
✅ Подпишись! - CLICK ✅
NGC 2070 - эмиссионная туманность в созвездии Золотая Рыба. Также известна под названием «Тарантул».
В центре туманности находится небольшое скопление звёзд R136, на стыке трёх пузырей. Эти звёзды — результат процессов звездообразования, их возраст оценивается приблизительно в два миллиона лет. Кроме того, туманность содержит сверхмассивную звезду RMC 136a1 массой 265 солнечных (это самая массивная звезда из обнаруженных по состоянию на 21.07.2011)
По краю туманности находятся относительно молодые шаровые звездные скопление, а так же группировки молодых звезд, которые входят в состав сверхассоциации.
ющие на её вещество внутренние силы уравновешиваются. Какие же это силы?
Звезда – раскалённый газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.
Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.
Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.
Излучение, покидающее поверхность звезды, качественно (но не количественно) отличается от излучения, рождающегося в источнике звёздной энергии. По мере движения наружу длина волны света увеличивается. Поверхность Солнца, например, излучает в основном световые и инфракрасные лучи, а в его недрах возникает коротковолновое рентгеновское и гамма-излучение. Давление излучения для Солнца и подобных ему звёзд составляет лишь очень малую долю от давления газа, но для гигантских звёзд оно значительно.
Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца — около 15 млн. градусов.
При таких температурах вещество в звёздных недрах почти полностью ионизовано. Атомы химических элементов теряют свои электронные оболочки. Вещество состоит только из атомных ядер и отдельных электронов. Поскольку поперечник атомного ядра в десятки тысяч раз меньше поперечника целого атома, то в объёме, вмещающем всего десяток целы
Забудьте о Вселенной и представьте себе резиновый коврик. Бросим на него легкий маленький мяч: он пойдет по прямой. Но если мяч будет тяжелым, сделанным, например, из камня, он отклонится от прямой линии и уйдет вбок. Также звезды и планеты искривляют пространство вокруг себя, проминают его и движутся по желобам. Это и есть идея Эйнштейна — пространство не является пустым, оно живет и передает силу другим телам. Солнце не могло бы передавать Земле силу притяжения в пассивной пустоте.
После Большого взрыва должно было остаться реликтовое тепло. Во второй половине XX века Арно Пензиас и Роберт Вудроу Вильсон обнаружили шум, работая с антенной, и поняли, что она воспринимает это реликтовое излучение. В 1978 году они получили за это Нобелевскую премию.
Что было топливом Большого взрыва? Какая сила заставила его произойти? Может, это была гравитация? Но она притягивает предметы, а не расталкивает их. И все же, если мы попробуем посмотреть, как Вселенная сжимается, становится плотной, то все математические расчеты дадут ноль. Это поразило физиков. Это означало, что существовали экзотические факторы окружающей среды, из–за которых гравитация расталкивала тела в сторону. Все это произошло в мельчайшие доли секунды 14 млрд. лет назад.
Часть космического топлива, которое питает расширение Вселенной, не участвовало в Большом взрыве. Присутствие этой энергии могло повлечь за собой возникновение других Вселенных. Количество их неизвестно. Наша будет среди них лишь маленьким пузырьком.
Теория струн разработана для того, чтобы ответить на вопрос, из чего сделана материя. Молекула состоит из атомов, атомы — из электронов, нейтронов и протонов, протоны — из кварков. Как русские матрешки. Однако все это значит, что где-то должна быть неделимая частица, финальная точка, которая уже не обладает структурой. Теория струн говорит о том, что, возможно, это не частица. Внутри самой маленькой точки может находиться энергетическая структура, которая вибрирует, как струна, но производит не звук, а частицу. В зависимости от частоты, частицы получаются разные.
Струна настолько мала, что если бы атом был размером со Вселенную, она была бы размером с дерево. Вот почему эмпирически теорию струн пока нельзя подтвердить. Для трехмерного пространства теория струн не подходит. Но если измерений больше 10, она становится непротиворечивой. Возможно, эти измерения очень малы, и их нельзя увидеть невооруженным взглядом.
Есть числа, которые полностью описывают нашу Вселенную. Это фундаментальные физические постоянные: массы элементарных частиц, коэффициенты электромагнитного взаимодействия и другие. Если изменить любое из этих чисел, мир просто перестанет существовать. Возможно, эти постоянные зависят от формы дополнительных измерений. Взаимодействие измерений определяет взаимодействие планет.
Наблюдения показали, что Вселенная, расширяясь, ускоряется, а не замедляется. Что раскидывает галактики? Дело в том, что все пространство заполнено топливом, темной энергией, которая толкает
Фото туманности было сфотографировано спутником NASA Galaxy Evolution и демонстрирует в ультрафиолетовом свете так называемую туманность Петля лебедя, которая находится в 1500 световых годах от Земли в созвездии Лебедя.
Читать полностью…Забудьте о Вселенной и представьте себе резиновый коврик. Бросим на него легкий маленький мяч: он пойдет по прямой. Но если мяч будет тяжелым, сделанным, например, из камня, он отклонится от прямой линии и уйдет вбок. Также звезды и планеты искривляют пространство вокруг себя, проминают его и движутся по желобам. Это и есть идея Эйнштейна — пространство не является пустым, оно живет и передает силу другим телам. Солнце не могло бы передавать Земле силу притяжения в пассивной пустоте.
После Большого взрыва должно было остаться реликтовое тепло. Во второй половине XX века Арно Пензиас и Роберт Вудроу Вильсон обнаружили шум, работая с антенной, и поняли, что она воспринимает это реликтовое излучение. В 1978 году они получили за это Нобелевскую премию.
Что было топливом Большого взрыва? Какая сила заставила его произойти? Может, это была гравитация? Но она притягивает предметы, а не расталкивает их. И все же, если мы попробуем посмотреть, как Вселенная сжимается, становится плотной, то все математические расчеты дадут ноль. Это поразило физиков. Это означало, что существовали экзотические факторы окружающей среды, из–за которых гравитация расталкивала тела в сторону. Все это произошло в мельчайшие доли секунды 14 млрд. лет назад.
Часть космического топлива, которое питает расширение Вселенной, не участвовало в Большом взрыве. Присутствие этой энергии могло повлечь за собой возникновение других Вселенных. Количество их неизвестно. Наша будет среди них лишь маленьким пузырьком.
Теория струн разработана для того, чтобы ответить на вопрос, из чего сделана материя. Молекула состоит из атомов, атомы — из электронов, нейтронов и протонов, протоны — из кварков. Как русские матрешки. Однако все это значит, что где-то должна быть неделимая частица, финальная точка, которая уже не обладает структурой. Теория струн говорит о том, что, возможно, это не частица. Внутри самой маленькой точки может находиться энергетическая структура, которая вибрирует, как струна, но производит не звук, а частицу. В зависимости от частоты, частицы получаются разные.
Струна настолько мала, что если бы атом был размером со Вселенную, она была бы размером с дерево. Вот почему эмпирически теорию струн пока нельзя подтвердить. Для трехмерного пространства теория струн не подходит. Но если измерений больше 10, она становится непротиворечивой. Возможно, эти измерения очень малы, и их нельзя увидеть невооруженным взглядом.
Есть числа, которые полностью описывают нашу Вселенную. Это фундаментальные физические постоянные: массы элементарных частиц, коэффициенты электромагнитного взаимодействия и другие. Если изменить любое из этих чисел, мир просто перестанет существовать. Возможно, эти постоянные зависят от формы дополнительных измерений. Взаимодействие измерений определяет взаимодействие планет.
Наблюдения показали, что Вселенная, расширяясь, ускоряется, а не замедляется. Что раскидывает галактики? Дело в том, что все пространство заполнено топливом, темной энергией, которая толкает
Фото туманности было сфотографировано спутником NASA Galaxy Evolution и демонстрирует в ультрафиолетовом свете так называемую туманность Петля лебедя, которая находится в 1500 световых годах от Земли в созвездии Лебедя.
Читать полностью…✅Рекомендуем!✅
Интереснейший канал с историями о такси, про такси и просто про нас.
https://telegram.me/joinchat/ABkWyjz1BNyC3j8XVfYfOw
Станция «Кассини» была запущена 15 октября 1997 года. Для того, чтобы оказаться на сатурнианской орбите, «Кассини» предстояло выполнить долгожданный и ответственный маневр торможения.
1 июля 2004 года в 2:11 по Гринвичу «Кассини» прошел так называемый восходящий узел траектории и преодолел плоскость колец Сатyрна, проскочив точно между двумя тонкими внешними колечками, обозначаемыми как F и G.
Снимки, сделанные во время маневра:
Какие астрономические события порадуют нас этим летом?
Список из шести впечатляющих небесных шоу, которые нельзя пропустить:
20 июня: полнолуние и солнцестояние
В ночь с 20 июня на 21 июня мы станем свидетелями события, которого не видели с 1967 года — полнолуния одновременно с июньским солнцестоянием.
Солнце достигает самой высокой точки в Северном полушарии, отмечая начало северного лета, и самой нижней точки в Южном полушарии, указывая на старт южной зимы.
За 12 часов до этого Луна достигнет полной фазы и взойдет снова, в ночь с понедельника на вторник, на 99 % освещенной.
В последний раз два астрономических события совпадали 49 лет назад 22 июня 1967 года. В следующий раз такое повторится через 46 лет, 21 июня 2062 года.
Почему солнцестояние и полнолуние так редко совпадают? Полнолуние случается в период с 20 по 22 июня довольно часто, но дата июньского солнцестояния «скачет» в пределах промежутка, поэтому сопвпадения настолько редки.
Конец июля — начало августа: метеорные потоки Дельта-Аквариды
Астрономический феномен два-в-одном — два метеорных потока «льются» из одной и той же области ночного неба почти одновременно.
Южные Дельта-Аквариды, которые чуть лучше видны в Южном полушарии, достигнут пика 28 и 29 июля.
Северные Дельта-Аквариды достигают кульминации немного позже, вместе с Персеидами (о них мы расскажем ниже).
11 — 12 августа: метеорный поток Персеиды
Если Дельта-Аквариды показались вам недостаточно богатыми на метеоры, не беспокойтесь. Просто дождитесь Персеид, одного из лучших метеорных потоков всего года. «Звездный дождь» «проливает» около 100 метеоров в час, а также больше так называемых «файерболов», чем любой другой поток в году. Персеиды такие яркие, что их видно даже из делового центра большого города.
27 августа: схождение Венеры и Юпитера
Ночью 27 августа планеты Венера и Юпитер подойдут очень близко друг к другу на западной части неба.
1 сентября: ежегодное солнечное затмение в Африке
В течение трех часов Луна будет проходить перед Солнцем, создавая солнечное затмение. Луна будет всего в пяти днях от апогея, самой далекой точки от Земли. Когда Земля, Луна и Солнце выстроятся в ряд 1 сентября, Луна покроет большую часть Солнца, оставив каемку. Этот феномен называется «Огненным кольцом».
Источник: gismeteo
УЧЁНЫЕ ИССЛЕДУЮТ ВОЗМОЖНОСТИ КВАНТОВОЙ ПЕРЕДАЧИ ДАННЫХ В КОСМОСЕ
Прямо сейчас оформить подписку на квантовый интернет не получится, ни один провайдер вам такого не предложит. Но это только пока, ведь сейчас всё только начинается, поэтому сначала нужно просчитать все варианты, исследовать возможности и изучить риски, а уже затем приступать к серьёзным задачам. Именно так и поступили учёные из Национального университета Сингапура и университета Страйкленда, Великобритания, после чего объявили о начале экспериментальной части своей работы, которая развернётся в космосе.
Сингапурские учёные, заручившись поддержкой коллег из Великобритании, начали испытания технологий узлов квантовой спутниковой связи. Считается, что такая связь будет безопасной, позволит не только обмениваться зашифрованной информацией, но и поможет объединить будущие квантовые компьютеры в единую сеть. Начав испытания, исследователи собираются разместить на орбите Земли компактное устройство, оборудованное вычислительными компонентами, а также модулями, используемыми для обеспечения квантовой связи, после чего будут проводить замеры. Устройство называется SPEQS, и оно создаёт коррелированные фотоны, а затем их измеряет.
Александр Линг, глава команды сингапурского университета, занимающейся исследованиями в Центре квантовых технологий, сообщает, что до них никто таких исследований в космосе не проводил, поэтому можно считать их новаторскими. Другой специалист этого центра, профессор Артур Экерт, выдвинул идею использования запутанных частиц для криптографии и надеется, что Сингапур, являясь лидером в этой области, продолжит проводить исследования, выведя их на другой, глобальный уровень.
Локальные квантовые сети уже существуют, а главная проблема, над которой в данный момент трудится команда Александра Линга — решение предела расстояния. На данном этапе передача данных ограничена, а потери в передачах пока не решены, ведь расстояние до поверхности планеты очень большое. Даже если объединить передатчики с помощью сети спутников, сигналу всё ещё необходимо будет пройти через атмосферу и преодолеть расстояние в 10 километров.
Сейчас проходят испытания устройства-первопроходца, внутри которого упакован лазерный диод, зеркала, детекторы фотонов и ряд других необходимых компонентов, принимающих фотоны от лазера BluRay, а затем разбивающих их на две части. После этого происходит замер свойств пары. Всё это убрано в алюминиевый кейс и, как рассчитывают учёные, сможет без проблем пережить запуск и вывод на орбиту.
Предыдущее устройство команды уже собирались отправить в космос двумя годами ранее, но ракета-носитель взорвалась на старте, а сам спутник, содержащий измеритель, чуть позже был обнаружен на пляже целым и невредимым. Всё до сих пор работает.
Итогом своей работы исследователи видят единую квантовую сеть, объединяющую цепь спутников, находящихся на орбите Земли, и наземные станции, повсеместно принимающие сигналы из космоса. Учёные считают, что в будущем их работа может оказать
Необычайно сильные ветра обнаружены на далёкой экзопланете
Учёные из Университета Уорика создали первую погодную карту планеты, находящейся за пределами Солнечной системы (ранее подобное было сделано только для "неудавшейся звезды").
Согласно наземным наблюдениям, на планете HD 189733 b атмосферные массы передвигаются в 20 раз быстрее, чем самые сильные ветра Земли. Их скорость в 7 раз превышает скорость звука!
HD 189733 b – экзопланета, вращающаяся вокруг звезды HD 189733. Светило расположено на расстоянии около 63 световых лет от Земли в созвездии Лисички.
Этот мир на 13% массивнее Юпитера и совершает оборот вокруг своей родительской звезды за 2,2 земных дня, что делает его так называемым горячим юпитером с температурой поверхности около 1200 градусов по Цельсию.
Так как экзопланета находится недалеко от нас, то представляет особый интерес для астрономов. Они выяснили, что она окрашена в насыщенный синий цвет (вероятно, из-за частиц силикатов), также в её атмосфере присутствует углекислый газ.
HD 189733b во время прохода по лику звезды. Изменение фоновой "подсветки" позволило учёным определить скорость движения атмосферы в синей (5300 км/ч) и красной (2200 км/ч) частях. Коррекция на вращение планеты дала окончательный результат – 8700 км/ч (иллюстрация Mark A. Garlick/University of Warwick).
Астрофизики из Университета Уорвика впервые измерили и составили карту погоды чужого мира с помощью спектрографа HARPS 3,6-метрового телескопа Обсерватории Ла-Силья в Чили. С помощью полученных данных учёные подсчитали, что скорость ветров, носящихся над поверхностью HD 189733 b, составляет около 8700 километров в час.
Для оценки скорости ветров в атмосфере экзопланеты учёные использовали эффект Доплера: по мере удаления HD 189733 b от Земли в ходе её движения по собственной орбите меняются характеристики приходящего от неё света.
"Поверхность звезды в центре ярче, чем по краям. Когда планета проходит по лику звезды, меняется количество света звезды, блокируемое разными частями атмосферы экзопланеты, — рассказывает один из авторов исследования Том Лоуден (Tom Louden). — Впервые мы использовали такого рода информацию, чтобы измерить скорость ветров на противоположных сторонах планеты и составить карту скоростей ветров".
Исследователи уверены, что метод, использовавшийся для расчёта скорости ветров на HD 189733 b, может быть использован для изучения погодных условий на других более похожих на Землю экзопланетах.
Научная статья группы Лоудена будет опубликована изданием Astronomical Journal Letters
Крупные метеорные потоки в 2016 году:
Дельта-Аквариды - 30 июля - 16 метеоров в час, Новолуние
Персеиды - 12 августа - 150 метеоров в час, I-ая четверть
Дракониды - 8 октября - 20 метеоров в час, I-ая четверть
Ориониды - 21 октября - 15 метеоров в час, III-ая четверть
Леониды - 17 ноября - 15 метеоров в час, Полнолуние
Геминиды - 14 декабря - 120 метеоров в час, Полнолуние
Квадрантиды - 3 января 2017 г - 150 метеоров в час, I-ая четверт.
вать юнцом — фактически, он стар как сама вселенная. А найденные белые карлики, возможно, были первыми звездами в нашей галактике, за которыми последовали сотни миллиардов других.
8. Ярчайшая галактика из известных нам была найдена с помощью телескопа WISE. Сказать, что WISE J224607.57−052635.0 светится, значит не сказать ничего — она сияет как 300 триллионов солнц. Предполагаемая причина — в черной дыре такой тяжести, что сложно представить её существование. Она давно превысила свой порог поглощения и выплескивает энергию в окружающий пылевой кокон, порождая светящуюся ауру.
9. Галактика M60-UCD1 совсем невелика — лишь 300 световых лет в длину и около 140 миллионов звёзд. Только вот ее черная дыра с легкостью затыкает черную дыру Млечного Пути — масса в 21 миллион солнц против 4 миллионов. Ранее считалось, что масса черной дыры напрямую определяет размер галактики, но M60-UCD1 опровергла эту теорию одним своим существованием.
10. Галактика EGS8p7 возрастом в 13.2 миллиарда лет настолько стара, что мы вообще не должны ее видеть. По всем признакам она должна была образоваться еще в те времена, когда вселенная была заполнена свежесозданным и непроницаемым для излучения галактик нейтральным водородом. Возможно, она была столь яркой и горячей, что реионизировала водород вокруг себя гораздо раньше, чем другие галактики.