Земля во Вселенной
Взгляните ещё раз на эту точку. Это здесь. Это наш дом. Это мы. Все, кого вы любите, все, кого вы знаете, все, о ком вы когда-либо слышали, все когда-либо существовавшие люди прожили свои жизни на ней. Множество наших наслаждений и страданий, тысячи самоуверенных религий, идеологий и экономических доктрин, каждый охотник и собиратель, каждый герой и трус, каждый созидатель и разрушитель цивилизаций, каждый король и крестьянин, каждая влюблённая пара, каждая мать и каждый отец, каждый способный ребёнок, изобретатель и путешественник, каждый преподаватель этики, каждый лживый политик, каждая «суперзвезда», каждый «величайший лидер», каждый святой и грешник в истории нашего вида жили здесь — на соринке, подвешенной в солнечном луче.
Земля — очень маленькая сцена на безбрежной космической арене. Подумайте о реках крови, пролитых всеми этими генералами и императорами, чтобы, в лучах славы и триумфа, они могли стать кратковременными хозяевами части песчинки. Подумайте о бесконечных жестокостях, совершаемых обитателями одного уголка этой точки над едва отличимыми обитателями другого уголка. О том, как часты меж ними разногласия, о том, как жаждут они убивать друг друга, о том, как горяча их ненависть.
Наше позёрство, наша воображаемая значимость, иллюзия о нашем привилегированном статусе во вселенной — все они пасуют перед этой точкой бледного света. Наша планета — лишь одинокая пылинка в окружающей космической тьме. В этой грандиозной пустоте нет ни намёка на то, что кто-то придёт нам на помощь, дабы спасти нас от нашего же невежества.
Земля — пока единственный известный мир, способный поддерживать жизнь. Нам больше некуда уйти — по крайней мере, в ближайшем будущем. Побывать — да. Колонизировать — ещё нет. Нравится вам это или нет — Земля сейчас наш дом.
Говорят, астрономия прививает скромность и укрепляет характер. Наверное, нет лучшей демонстрации глупого человеческого зазнайства, чем эта отстранённая картина нашего крошечного мира. Мне кажется, она подчёркивает нашу ответственность, наш долг быть добрее друг с другом, хранить и лелеять бледно-голубую точку — наш единственный дом.
Карл Саган
Галилеевы спутники — одни из крупнейших спутников Солнечной системы. Впервые наблюдались Галилеем в декабре 1609 или январе 1610 года с помощью его первого в истории телескопа.
Читать полностью…ергии, которые были получены недавно, эти результаты, как считают британские космологи, свидетельствуют в пользу того, что она действительно существует. Остается самая сложная задача — понять, как мы сможем ее увидеть и изучить ее свойства.
Читать полностью…Ураган "Мэтью" из Международной космической станции в космосе (октябрь, 2016 год).
Читать полностью…Туманность Шарплесс 308 - звездный пузырь
Созданный ветрами горячей массивной звезды, этот космический пузырь просто огромен. Он занесен в каталог как Шарплесс 2-308 и находится от нас на расстоянии около 5200 световых лет в созвездии Большого Пса. Массивная звезда, которая создала пузырь, относится к классу звезд Вольфа-Райе. Это яркая голубая звезда недалеко от центра туманности. Масса звезд Вольфа-Райе в 20 раз больше массы Солнца, и, как полагают, эта стадия эволюции массивных звезд завершается взрывом сверхновой. Возраст этой туманности в виде пузырька - примерно 70 000 лет. Слабое излучение обусловлено свечением ионизированных атомов кислорода, которые имеют на снимке голубой оттенок....
Спорим, ты никогда не разговаривал с настоящим рэпером?
Джейсон Деруло выучил русский и интересуется рецептом борща, спрашивает про ушастых покемонов и ждет рецепта настоящего борща!
Джейсон уже в Телеграм - поговори, попадешь на афишу его концерта ,)
ерной дыры всё это оказывается неверным. Математически это выражается в том, что полная вероятность каких-то процессов может оказаться неравной единице, даже больше единицы.
Критика парадокса
Однако все сказанное выше основывалось на каких-то качественных рассуждениях. Все они требуют формального вычислительного подтверждения. Эти вычислительные подтверждения парадокса формулируются со столь низкой степенью строгости и при таком числе грубых предположений, что с такой же степенью строгости можно его и опровергнуть. Другое дело, что многие детали разных процессов, которые происходят в присутствии черных дыр, остаются неясными. И для той части научного сообщества, которая считает, что парадокс есть, его решение является путеводной звездой в познании природы черных дыр. Так часто бывает в науке, что имеются разные точки зрения касательно пока еще плохо понятого предмета.
Эмиль Ахмедов, доктор физико-математических наук, ведущий научный сотрудник Института теоретической и экспериментальной физики имени А. И. Алиханова, доцент кафедры теоретической физики МФТИ, доцент факультета математики НИУ ВШЭ.
Парадокс Хокинга
Суть проблемы, которую сформулировал Хокинг, заключается в следующем: при формировании и последующем распаде черных дыр теряется информация об их детальном составе.
Инфракрасное смещение
Чтобы объяснить суть парадокса, рассмотрим электромагнитные волны. Они бывают разной частоты, и самым низким частотам отвечают радиоволны. Если увеличить частоту, это будет уже инфракрасное излучение. Потом мы получим волны из видимого (светового) спектра. Далее за пределами видимого спектра будет ультрафиолетовое излучение, рентгеновские волны и, наконец, гамма-излучение.
Если мы поставим источник излучения на некотором расстоянии от какого-либо массивного космического объекта и будем следить за испускаемым им светом на большом расстоянии от центра гравитации, то увидим так называемое инфракрасное смещение. Наблюдаемая частота излучения вдалеке от гравитирующего тела будет несколько ниже излученной в его окрестности. Это объясняется тем, что энергия фотонов (электромагнитных волн) прямо пропорциональна их частоте. Фотон, по мере того как преодолевает гравитационное притяжение, совершает работу, соответственно, теряет энергию, поэтому его частота понижается.
Для такого тела, как Земля, этот эффект достаточно слабый, но измеримый. Однако, например, для нейтронной звезды величина инфракрасного смещения может быть достаточно большой. В свою очередь, для черной дыры это явление достигает своего экстремума в следующем смысле. Дело в том, что у черной дыры есть так называемый горизонт событий — поверхность, с которой любое излучение претерпевает бесконечное инфракрасное смещение. То есть если источник излучения находится прямо на горизонте, то создаваемое им поле вы видите не меняющимся во времени: излучения нет, на каком бы расстоянии от горизонта вы бы ни висели. Горизонт — это как раз та поверхность, из пределов которой свет (или любая волна) не может вылететь наружу.
«Теорема об отсутствии волос»
Черные дыры устроены так, что они создают исключительно стационарные поля, даже если вращаются вокруг своей оси (при условии, что их центр масс покоится). Создаваемые ими гравитационные и электромагнитные поля не будут меняться во времени. Это утверждение называется теоремой об отсутствии волос у черной дыры. Для звезд это не так: они могут создавать вокруг себя, например, переменные во времени магнитные поля, даже если их центр тяжести покоится. Это происходит из-за того, что заряды внутри звезды совершают различные движения, создавая излучение. Но черная дыра ничего такого не создает, даже если у нее под горизонтом происходит страшное движение зарядов.
Поставим мысленный эксперимент: скажем, у нас есть два облака частиц, одно состоит исключительно из протонов и антипротонов, а второе — из нейтронов. Что-то начало в какой-то момент сжимать эти облака. Если их массы и моменты вращения были одинаковы, то в результате мы получим две черные дыры, абсолютно неотличимые друг от друга.
Излучение Хокинга
Стивен Хокинг в начале 1970-х годов пока
вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.
В поисках теории всего
Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.
бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.
Фермионы
Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.
Лептоны
Лептоны бывают трех поколений, в каждом поколении два лептона — один заряженный и один нейтральный. Первое поколение: электрон и электронное нейтрино, второе — мюон и мюонное нейтрино, третье — тау-лептон и тау-нейтрино. Лептоны очень похожи друг на друга, мюоны и тау-лептоны (так же как и электроны) могут образовывать атомы, заменяя на орбиталях электроны. Главное их отличие — в массе: мюон в 207 раз тяжелее электрона, а тау-лептон в 17 раз тяжелее мюона. С нейтрино должна быть похожая история, но их массы настолько малы, что до сих пор не измерены. Эти массы точно ненулевые, доказательство этого факта было отмечено Нобелевской премией в 2015 году. Мюон и тау-лептон нестабильны: время жизни мюона примерно 0,2 миллисекунды (что на самом деле довольно долго), тау-лептон распадается примерно в 17 раз быстрее. Особенности нейтрино состоят в том, что они участвуют только в слабом взаимодействии, из-за этого их очень трудно засечь. Также они могут произвольно менять свой сорт: к примеру, электронное нейтрино может внезапно превратиться в мюонное, или наоборот. В отличие от бозонов, у лептонов существуют античастицы. Таким образом, всего лептонов не 6, а 12.
Кварки
В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.
Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных зар
лескопы и начнем ежедневное наблюдение. Работы будет очень много, и это не может не радовать», — говорит Калтенеггер.
Как мы поймем, что нашли то, что нужно?
Может пройти несколько десятков лет до создания технологий, которые позволят нам найти «Землю 2.0». Но астрономы не планируют сидеть все это время сложа руки.
«Мы хотим быть максимально подготовленными для ответа на следующих вопрос: среди тысяч звезд, среди десятков из них, ближе всего к нам расположенных, какую именно следует выбрать первой для исследования?», — продолжает Калтенеггер.
«Мы найдем правильный ответ, если сложим все наши знания в астрономии и о жизни на Земле».
В настоящий момент в стенах Института имени Карла Сагана Калтенеггер и ее коллеги накапливают целые горы информации, которая поможет «охотникам за пришельцами» выбрать наиболее обещающих кандидатов для исследования. Эти данные содержат тысячи различных гипотетических вариантов химических составов атмосферы: некоторые из них напоминают нашу Землю сегодня, некоторые напоминают ее в прошлом. Другие данные описывают полностью чужеземные
о взять кислород или метан, то они не могут являться стопроцентными индикаторами наличия жизни. Оба вещества могут быть получены в процессе неорганических химических реакций. Но если их соединить и добавить немного воды, то получится совершенно другая история.
«В настоящий момент самым значимым индикатором возможной жизни является комбинация кислорода или озона с содержанием восстановительных газов», — говорит Калтенеггер.
«Многие биологические вещества, такие как метан или углекислый газ, могут производится даже камнями, поэтому по одиночке мы не можем их принять в качестве индикаторов наличия жизни. Но если кислород обнаруживается вместе с метаном, то, вероятнее всего, имеется что-то, что способно вырабатывать эти вещества огромными объемами».
Другими словами, ученые знают, что именно может указывать на наличие жизни на той или иной планете. Если однажды мы найдем планету в условной зоне обитаемости (той самой «зоне Златовласки»), оборачивающейся вокруг звезды, похожей на наше Солнце и имеющей в своей атмосфере вышеописанную комбинацию веществ, то вполне сможем говорить о той или иной вероятности наличия на ней жизни. Все это, конечно, замечательно, но как именно мы будем искать такие планеты?
Разумеется, в рамках будущих космических миссий, начиная с запуска космического телескопа TESS (Transit Exoplanet Survey Satellite), который должен состояться в 2017 году. В то время как большинство целей телескопа «Кеплер» находятся на расстоянии 500-1000 световых лет, задачей TESS будет поиск соседних, самых ближайших к нам экзопланет. Его мощности позволят просканировать абсолютно весь небосклон и проследить более чем за полумиллионом звезд, находящихся в непосредственной близости к нашей Солнечной системе.
«TESS будет как «Кеплер». Он тоже основан на транзитном методе обнаружения, но вместо того, чтобы смотреть только в одну конкретную часть космического пространства, он сможем сканировать все небо, сосредоточив свое внимание на ближайших к нам звездах», — говорит Калтенеггер.
«Он позволит нам исследовать множество многообещающих целей, находящихся гораздо ближе к нам, чем цели «Кеплера».
Может, TESS и сможет выделить множество наиболее интересных кандидатов, но он не будет заниматься изучением их атмосферы. Эту задачу собираются возложить на самый передовой космический телескоп современности – Космический телескоп имени Джеймса Уэбба (JWST), 6,5-метровую космическую обсерваторию на солнечных батареях, которую собираются запустить в космос в 2018 году. Благодаря своим беспрецедентным способностям обнаружения JWST станет передовой космической обсерваторией на ближайшее десятилетие. Отчасти его невероятная чувствительность связана с его солнцезащитным экраном, который охлаждает инструменты телескопа до -223 градусов Цельсия. При таких низких температурах JWST сам по себе практически не будет выбрасывать никакого излучения, позволяя его сверхчувствительным приборам обнаруживать даже очень удаленные энергетические сигнатуры, включая едва заметные и
размером с Землю, 10 процентов звезд похожи на наше Солнце, что в общей сложности дает нам миллиард планет размером с Землю, находящихся в обитаемых зонах звезд, похожих на Солнце».
Позвольте повторить последнюю часть: миллиард планет размером с Землю, находящихся в обитаемых зонах звезд, похожих на Солнце. Еще 20 лет назад астрономы не были уверены в том, что существует хотя бы одна. И это, разумеется, речь идет только о нашей галактике.
«Только в одной нашей галактике миллиарды звезд. А теперь представьте, что еще есть миллиарды других галактик», — говорит Калтенеггер.
«При любом раскладе цифры говорят в нашу пользу».
phunters3
Число обнаруженных экзопланет по годам
В технологиях, лежащих в основе этих удивительных открытий, на самом деле нет ничего сложного. Большинство из обнаруженных экзопланет были найдены благодаря так называемому транзитному методу обнаружения – моменту, при котором экзопланета проходит перед своей звездой, закрывая часть ее света. Эта разность в яркости наблюдается телескопами. На практике, однако, эту разницу на самом деле очень сложно различить хотя бы потому, что сам объем свечения из-за колоссальных расстояний между планетой и нашими телескопами весьма трудно уловим.
«Представьте, что вы смотрите на высочайший небоскреб и при этом на улице темно. В доме открыто каждое окно и включен свет. А теперь представьте, что к одному окну на самом верхнем этаже подходит человек и на сантиметр закрывает жалюзи. Этот объем измененной яркости вам и необходимо измерить, чтобы найти планету размером с Землю», — приводит аналогию Батала.
Кстати, сделать это нужно вам по крайней мере раза два, чтобы убедиться в том, что вы действительно правы в своих наблюдениях.
Для возможности использовать транзитный метод обнаружения ученым пришлось разработать фотометры в тысячу раз более чувствительные и точные, чем те, которые уже были. Как объясняет Боруки, эти световые сенсоры должны следить за тысячами звезд одновременно, так как вероятность того, что в поле зрения телескопа может находиться нужная звезда с экзопланетой, равен менее 1 процента. Кроме того, фотометр должен оставаться все время неподвижным. В условиях Земли этого добиться невозможно, поэтому их необходимо использовать именно в космосе.
Учитывая те амбициозные характеристики (и возможности, включая возможность выяснить радиус, орбитальный период и иногда массу) телескопа, которые были предложены, у Боруки ушло почти два десятка лет на то, чтобы разработать, создать первый прототип и убедить аэрокосмическое агентство NASA дать зеленый свет проекту «Кеплер». При этом у телескопа определенно имеются свои недостатки, не позволяющие ему следить за очень удаленными звездами. Тут не хватает мощности даже современных фотометров. Благодаря знанию массы и радиуса планеты, мы можем определить ее плотность, которая будет говорить нам о том – смотрим ли мы на каменистую планету, похожую на Землю, или скорее на газовый шар, вроде того же Юпитера.
Наша галактика не перестает удивлят
Звезды, пульсирующие, словно бьющиеся сердца, стали объектом нового исследования
Звезды, называемые «бьющимися сердцами» (heartbeat stars), открытые в больших количествах при помощи космического телескопа НАСА «Кеплер», представляют собой двойные звезды (системы из двух звезд, обращающихся относительно друг друга), получившие свое название в связи с тем, что кривая их блеска внешне напоминает электрокардиограмму, графическое представление электрических сигналов, испускаемых бьющимся сердцем. Эти звезды представляют интерес для ученых, поскольку они представляют собой двойные системы с вытянутыми эллиптическими орбитами. Это делает их естественными лабораториями для изучения гравитационного влияния звезд друг на друга.
В системе звезд типа «бьющегося сердца» взаимное гравитационное притяжение компонент системы в точке их максимального сближения существенно сжимает звезды, превращая их в эллипсоиды, что является одной из причин того, что эти звезды имеют переменную яркость.
Эти гравитационные силы, также называемые «приливными силами», заставляют звезды типа «бьющегося сердца» вибрировать, или «звенеть» - другими словами, диаметры звезд изменяются пол мере их движения по общей орбите. Этот эффект особенно ярко выражен при максимальном сближении звезд.
В новом исследовании, проведенном группой астрономов во главе с Ави Шпорером (Avi Shporer) из Лаборатории реактивного движения НАСА, США, были проведены измерения орбитальных параметров для 19 звезд типа «бьющихся сердец» при помощи инструмента High Resolution Echelle Spectrometer (HIRES), установленного в Обсерватории им. Кека, Гавайи, США. Анализ этих результатов позволил авторам работы выдвинуть предположение о существовании в нескольких изученных системах третьей – или даже четвертой – компоненты, до сих пор не обнаруженной наблюдениями.
Исследование вышло в журнале Astrophysical Journal.
«Кассини» запечатлел изменения в «шестиграннике» Сатурна
Причина перемен в облике северного полюса Сатурна пока остается загадкой. По одной из версий, это может быть связано со сменой времен года на газовом гиганте.
Галактические «пустыни» подтвердили существование темной энергии
Наблюдения за крупнейшими скоплениями галактик в видимой Вселенной и космическими «пустынями» между ними помогли ученым подтвердить, что таинственная темная энергия, заставляющая Вселенную расширяться все быстрее, действительно существует, говорится в статье, опубликованной в Astrophysical Journal Letters.
«Мы придумали новую методику ведения очень точных наблюдений за тем, как эти регионы космоса влияют на микроволновое фоновое излучение Вселенной — световое эхо, оставшееся со времен Большого Взрыва, чьи фотоны проходят их на пути к Земле. Гравитация этих объектов должна искривлять этот свет, и если темная энергия существует, то тогда фотоны из «пустынь» будут чуть холоднее, чем частицы света из скоплений галактик», — рассказывает Сесандри Надатур (Sesandri Nadathur) из университета Портсмута (Великобритания).
Долгое время космологи считали, что наша Вселенная растет с постоянной скоростью, которая почти не меняется. В 1998 году нобелевские лауреаты Сол Перлмуттер, Брайан Шмидт и Адам Рисс показали, наблюдая за вспышками сверхновых первого типа, что это на самом деле не так — оказалось, что пределы мироздания расширяются все быстрее и быстрее.
Причиной этого ускорения, как сегодня считают ученые, является темная энергия — загадочная субстанция с экзотическими свойствами, на чью долю приходится 70% содержимого Вселенной. Мы почти ничего не знаем о ее свойствах, и сегодня ученые пытаются найти следы темной энергии в движениях галактик и в микроволновом фоновом излучении.
Используя новую методику наблюдений, Надатур и его коллега Роберт Криттенден (Robert Crittenden) попытались найти следы темной энергии в «растягивании» фотонов «эха» Большого Взрыва, используя снимки далеких скоплений галактик и пустот между ними, полученные обзором SDSS, и данные по флуктуациям в микроволновом фоне Вселенной, собранные орбитальным телескопом «Планк».
Попытки провести подобные замеры, как рассказывает Надатур, проводились и раньше по данным зонда WMAP и небольшому числу галактик, однако сила искривления света под действием темной энергии оказывалась в пять раз выше, чем предсказывали космологические модели устройства Вселенной. По этой причине большинство космологов крайне критически относилось к результатам подобных вычислений, считая их ошибкой.
Используя фотографии свыше 700 тысяч далеких галактик и данные по «эху» Большого Взрыва в их окрестностях, Криттенден и Надатур проверили, действительно ли их предшественники ошибались. Как показали их собственные замеры, эффект растягивания света действительно существует, однако его сила укладывается в предсказания классической теории Большого Взрыва.
К примеру, «температура» микроволнового излучения, исходящего от галактических «пустынь», оказалась на 15−5 микрокельвинов меньше, чем средние значения, а «эхо Большого Взрыва», проходящее через скопления галактик, было на 5−10 микрокельвинов «теплее» нормы.
Вкупе с другими данными по темной эн
На фото изображена точка, диаметр которой 200 световых лет, но она выглядит совершенно незначительной, на фоне остальной галактики. Смысл этой фотографии состоит в том, что о существовании человечества просто не могут знать за пределами этой маленькой точки.
Точка, или вернее – информационный пузырь образован радиосигналами, идущими от земли в межзвездном пространстве. С момента начала эра радиовещания, в 1895 году, сигнал успел удалиться от земли на расстояние почти в 120 световых лет, так что общий диаметр информационного пузыря составляет порядка 240 световых лет. Для сравнения, диаметр галактики составляет порядка 100 тысяч световых лет! Так что можно с уверенность сказать о том, что место человечества не то, чтобы во вселенной, но даже в галактике весьма и весьма незначительно.
С момента начала эра радиовещания, в 1895 году, сигнал успел удалиться от земли на расстояние почти в 120 световых лет.
Некоторые ученые говорят о том, что только в нашей галактике, в теории, может существовать миллионы населенных миров, но, по крайней мере в пределах 200 световых лет, скорее всего никого нет. Хотя, вполне возможно, что мы просто являемся самой развитой цивилизацией в округе, либо просто обратный сигнал еще не дошел. Во всяком случае, в небо сейчас направлено большое количество радиотелескопов, которые всегда готовы принять ответное послание, в случае, если оно кем-то запущено. И кстати, шанс получить ответ, и в самом деле имеется, ведь, только в этом, маленьком по галактическим меркам информационном пузыре, имеется порядка 6000 звездных систем, причем, это чисто растет на одну систему в день.
Правда, такой небезызвестный человек, как Стивен Хокинг, считает, что такая «самореклама» может выйти человечеству боком, так как инопланетяне, которые могут найти нас по этим радиосигналам, вполне возможно будут не столь дружелюбны. А выстоять против цивилизации, которая в состоянии совершать межзвездные путешествия, человечество, определенно, не сможет.
Во всяком случае, сейчас еще рановато говорить о том, что кто-нибудь вообще нас услышит.
Космический телескоп Hubble запечатлел планетарную туманность со спиральными рукавами.
Два спиральных рукава, берущих начало из яркого центра, могут навести вас на мысль, что вы смотрите на галактику, похожую на Млечный Путь. Однако объект, запечатленный на данном снимке, имеет немного другую природу: PK 329-02.2 - это планетарная туманность, расположенная в нашей Галактике.
Несмотря на свое название, этот объект не имеет никакого отношения к планетам. Планетарные туманности состоят из ионизированной газовой оболочки и центральной звезды, белого карлика. Они образуются при сбросе внешних слоев красных гигантов и сверхгигантов массой до 1.4 солнечных на завершающей стадии их эволюции.
зал, что черная дыра должна испускать излучение, но оно имеет принципиально другую природу по сравнению с тем классическим излучением, о котором мы говорили выше. У того излучения, которое обсуждалось выше, есть источники, а именно движущиеся заряды и массы. А у излучения Хокинга, можно сказать, нет источника: оно не является результатом никакого движения зарядов. Это излучение возникает в результате изменения свойств вакуума (амплификации/усиления нулевых колебаний) из-за коллапса материи в черную дыру. Более того, если заряды и массы рождают только электромагнитные и гравитационные волны, то в результате квантового излучения Хокинга может идти рождение электронов, позитронов, протонов и других частиц.
Итак, черные дыры начинают рождать различные частицы в своей окрестности. Это излучение обладает рядом характерных свойств. Во-первых, оно стационарно, то есть меняется во времени очень медленно, если черная дыра достаточно тяжелая и медленно теряет свою массу, рождая частицы. Более того, излучение Хокинга имеет термальный спектр. То есть черная дыра излучает как нагретый до какой-то температуры обычный источник — форма такого спектра характеризуется исключительно величиной температуры.
Важной особенностью температурного спектра является то, что все характеристики частиц, кроме массы и заряда, излучаются с одинаковой вероятностью. Грубо говоря, например, любая нейтральная частица и фотон с той же энергией излучаются с одинаковой вероятностью.
Парадокс
Теперь мы готовы к тому, чтобы сформулировать, в чем же заключается информационный парадокс. Представьте себе, что у вас есть два знакомых нам облака, одно из которых состоит из протонов и антипротонов, а другое — из нейтронов. Представим себе, что что-то сформировало из них две звезды — протонную и нейтронную. А потом эти звезды в результате своего горения какую-то часть своей массы излучили, а что-то осталось в виде холодного шара. Теоретически по остаткам эволюции звезд мы можем проследить историю каждой элементарной частицы, входившей в состав облаков. Конечно, технически это безумно сложная задача, но тут речь идет лишь о принципиальной возможности. Разница в случае с черными дырами заключается в том, что мы, во-первых, вроде как не можем различить две черные дыры — протонную и нейтронную, как было объяснено выше. Во-вторых, температурное излучение без источников не несет никакой детальной информации о составе черной дыры. Таким образом, по остаткам эволюции черных дыр, даже если их масса полностью перешла в излучение, мы, казалось бы, принципиально неспособны восстановить их происхождение.
Почему это парадоксально? Дело в том, что мощь науки заключается в ее предсказательной силе. Наука может предсказать, что если вы сделаете так-то и так-то, то вы получите такой-то результат с такой-то вероятностью и такой-то точностью, и выразить это утверждение количественно. И проверить тот или иной эксперимент может любой другой ученый. Получается, что если информация теряется, то в присутствии ч
Карл Саган - Мир, полный демонов. Наука - как свеча во тьме.
Последняя книга Карла Сагана, астронома, астрофизика и выдающегося популяризатора науки, вышедшая уже после его смерти.
Цель книги - объяснить научный метод для широкого круга людей, и воодушевить их подходить к новой информации критически, и скептически мыслить. В книге рассказывается, какими методами можно отличить науку, которая работает, от псевдонаучных идей. Эта книга, посвященная одной из его любимых тем - человеческому разуму и борьбе с псевдонаучной глупостью, - своего рода итог всей его работы.
яда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».
Конфайнмент
Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в какой-то момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.
Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.
Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и из-за сил поверхностного натяжения она имеет
Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной
Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, — главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.
Строение вещества
Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).
Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.
Бозоны
В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а W-бозон распадается на электрон и нейтрино.
Остается последний бозон —
зменения в яркости света звезд, чьи колебания будут связаны с плотностью той или иной атмосферы планет, через которую этот свет будет проходить.
«Приходится работать в таких условиях, когда планета представлена лишь крошечным пикселем. И этот пиксель необходимо пропустить через различные световые фильтры. Вы смотрите на этот пиксель под различными цветами – примерно так же, как это происходит, когда солнечный свет проходит через капли дождя, создавая радугу, — и за счет разницы в показателях, даже на расстоянии многих световых лет, вы можете выяснить, какие химические частицы присутствуют в атмосфере этого мира», — объясняет Калтенеггер.
Несмотря на всю эту удивительную мощность JWST, ее не хватит для изучения множества каменистых планет, похожих на Землю. По мнению Калтенеггер, если мы найдем супер-Землю, оборачивающуюся вокруг красного карлика относительно недалеко от Солнечной системы, то будем в состоянии изучить ее атмосферу. Чаще всего «глаза» JWST будут устремлены в сторону более крупных миров, которые чаще всего будут оказываться просто огромными газообразными шарами, вроде нашего Юпитера.
«JWST сконцентрирует свое внимание на мини-Нептунах и супер-Землях, изучит многообразие их атмосферы, но телескоп не будет привязан только к поиску планет размером с Землю», — комментирует Батала.
Следующим после телескопа JWST станет WFIRST (Wide Field Infrared Survey Telescope, «Широкоугольный инфракрасный обзорный телескоп». Не путать с WISE, который был запущен в космос в декабре 2009 года), использующий метод микролинзирования для поиска планет. Его чувствительности должно хватить для поиска планет размером меньше Земли, находящихся на расстоянии более одной астрономической единицы от своей звезды (1 а. е. = дистанции между Землей и Солнцем). Благодаря установленному коронографу телескоп WFIRST также сможет напрямую следить за волнами света, отражаемыми более крупными планетами.
«Кеплер ведет статистику звезд и планет, находящихся в пределах плоскости Земной орбиты. WFIRST, в свою очередь, сможет следить за планетами, находящимися за ее пределами. Поэтому со временем мы получим более подробную картину того, какие существуют экзопланеты».
Когда миссию WFIRST запустят где-то в середине 2020-х, космические агентства смогут удвоить свои усилия по поиску внеземной жизни. Эксперты считают, что мощностей телескопа хватит на то, чтобы исследовать атмосферу множества каменистых планет размером с Землю и оборачивающихся вокруг наших ближайших звездных соседей.
«Задача этой миссии не будет состоять в нахождении множества «вторых Земель» в ближайшем космосе. Тем не менее имеется надежда, что данный проект сможет существенно продвинуть нас в вопросе глубины поиска и исследований близлежащих экзопланет в течение ближайших 30 лет».
«TESS определенно сможет найти десятки планет. Достаточно компактных, каменистых и находящихся на «правильном» расстоянии от своих звезд. Затем мы составим список самых ближайших и самых обещающих миров, направим на них наши те
ь. Вокруг многих звезд есть планеты, находящиеся на расстоянии ближе, чем Меркурий от Солнца, что опять же те же двадцать-тридцать лет назад рассматривалось абсолютно невозможным. Интересное наблюдение: «супер-Земли» и «мини-Нептуны» — два самых часто встречающихся типа планет, известных науке, — в нашей Солнечной не представлены. Мы лишь можем догадываться, какие еще удивительные миры скрывает космос.
«Есть планеты, оборачивающиеся вокруг двойных систем звезд, где есть не одно, а целых два «солнца», встающих на востоке и уходящих за горизонт на западе», — говорит Батала.
«Мы находили планеты в звездных скоплениях – 25 звезд на один кубический парсек пространства. На таких планетах небо вообще выглядит как полотно с россыпью разноцветных солнц».
«Существует удивительное разнообразие миров, изучать которые мы даже еще не начинали», — добавляет Калтенеггер.
Среди этих экзотических миров мы нашли немало планет, относящихся к так называемой «зоне Златовласки». Это миры, как правило, каменистые миры, где не сильно жарко и не сильно холодно для поддержания на их поверхности воды в жидком состоянии. Это планеты, оборачивающиеся вокруг звёзд, похожих на наше Солнце. Это миры, которые могли бы стать новыми «Землями».
«Эти потенциально обитаемые планеты встречаются относительно часто. И согласно статистике, рядом с нами могут находиться тысячи таких миров», — говорит Батала.
Однако, чтобы причислить потенциально обитаемую планету в разряд «будущей Земли», нам необходимо гораздо лучше и глубже их изучить. Благодаря новому поколению телескопов это, будем надеяться, наконец, станет возможным. Благодаря новым телескопам мы сможем не только наблюдать за интенсивностью яркости звезд, но и получим возможность изучения атмосферы планет, которые возле этих звезд находятся. Да, будущие телескопы обещают и такую возможность.
В погоне за «златовласками»
Может, Земля сейчас и выглядит из космоса милым голубым шариком, но было время, когда она не сверкала и пахла розами. Четыре миллиарда лет назад каменистая поверхность нашей планеты извергала колоссальные объемы раскаленной лавы, находилась под постоянной бомбардировкой комет и астероидов, время от времени подвергалась мощнейшей стерилизации ультрафиолетовым излучением и, в конце концов, практически не имела никаких запасов кислорода.
Именно жизнь со временем терраформировала Землю, через несколько миллиардов лет превратив суровую пустыню смерти в комфортабельную биосферу. Возможно, именно цианобактерии являются первыми живыми организмами, выработавшими существенный объем кислорода в качестве побочного продукта фотосинтеза. Сегодня основным источником выработки кислорода, как, впрочем, и основы для озонового слоя, защищающего нас от губительного ультрафиолетового излучения, являются растения и фитопланктон. Кроме того, в атмосфере нашей планеты содержатся и другие газы – углекислый газ и метан — представляющие собой комбинацию выбросов побочных продуктов метаболизма и сжигания ископаемого топлива.
Если отдельн
Земля 2.0: грандиозные планы поиска экзопланет на ближайшее будущее
Еще каких-то двадцать лет назад обнаружение еще одной планеты, похожей на Землю, считалось очередной научно-фантастической мечтой. Но поколения сменяются, и современные астрономы считают, что нет ничего невозможного.
«Обнаружение доказательств существования жизни за пределами Земли – это совсем не пустая мечта», — говорит Натали Батала, астроном из Исследовательского центра Эймса NASA.
«Это то, что мы действительно можем достичь. Возможно, не на моем веку, но, вполне возможно, на веку моей дочери».
Мнение Баталы пронеслось эхом в прошлую субботу на церемонии открытия Института имени Карла Сагана при Корнелльском университете. Институт, являющийся детищем астронома Лизы Калтенеггер, был основан для поиска и исследования миров, которые только-только начали появляться на нашем космическом горизонте. Если повезет, мы сможем найти еще одну Землю. А возможно, и десяток. Или тысячу таких же планет.
«Как выяснить – является ли оборачивающийся вокруг другой звезды мир обитаемым? К счастью, мы перешли в век истории, когда у нас есть инструменты, которые позволяют ответить на этот вопрос», — говорит Калтенеггер.
Найти «Землю 2.0» будет нелегко. Это потребует колоссальных усилий, но у астрономов, планетологов, химиков и биологов, собравшихся в стенах Института имени Карла Сагана, есть план. И вот как мы постараемся найти новую «бледно-голубую точку» и положим конец нашему космическому одиночеству.
Миллиарды и миллиарды
Сейчас самое интересное время для тех, кто заинтересован в открытии новых миров за пределами нашей Солнечной системы. За последние двадцать лет планетология не претерпела никаких серьезных пересмотров, а скорее прошла логичный эволюционный путь. Даже если среди нас по-прежнему остались скептики, считающие существование внеземной жизнью каким-то бредом, то даже для них становится сложным отрицать факты тех удивительных открытий, которые были совершены за это время.
Если смотреть на цифры, двадцать лет назад астрономы не могли подтвердить наличия ни одной планеты за пределами Солнечной системы. За последние шесть лет благодаря проекту NASA «Кеплер» — космическому телескопу, кружащему по нашей Солнечной системе и следящему за более чем 100 тысячами звезд одновременно, — ученые обнаружили более 4100 планетарных кандидатов и подтвердили существование 1000 настоящих планет. При этом следует отметить, что «Кеплер» не смотрит за абсолютно всеми звездами. Те звезды, за которыми он следит, представляют лишь малую часть общей картины. На базе такой выборки ученые, используя статистику, высчитывают распределение звезд по всему Млечному Пути.
«Мы выяснили, что у большинства звезд есть планеты. Чаще всего встречаются планеты размером с Землю. Довольно большое число этих планет находится в обитаемых зонах своих звезд», — говорит Билл Боруки, ведущий специалист программы «Кеплер».
«Если сложить все цифры вместе, то получается: 100 миллиардов звезд, 10 процентов из них имеют планеты