inspace | Technologies

Telegram-канал inspace - В Космосе

2712

Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Канал о космосе и всем, что с ним связано. Админ: @TELEHAN Прайс: telega.in/c/inSpace Ещё каналы: hanmedia.me/tg

Subscribe to a channel

В Космосе

Пятимерная чёрная дыра бросает вызов общей теории относительности.

Модель показывает, что на очень тонком "чёрном кольце" могут появляться выросты, разделённые перемычками, которые со временем разделятся и образуют несколько небольших чёрных дыр, лишённых горизонта событий.

Вот уже сто лет представления учёных об устройстве Вселенной основываются на общей теории относительности Альберта Эйнштейна, согласно которой гравитация представляет собой искривление материей пространственно-временного континуума. Это положение позволяет оценивать возраст звёзд и с уверенностью полагаться на системы глобального позиционирования и навигации.

Казалось бы, за столь долгий срок расчёты великого физика должны были выдержать все вызовы. Однако во Вселенной есть места, где общая теория относительности перестаёт действовать. Сингулярность – область внутри чёрной дыры, где гравитация настолько велика, что все наши представления о пространстве, времени и законах физики рушатся.

Чёрные дыры стали для физиков настоящим кошмаром, и единственным утешением служит то, что они скрываются за горизонтом событий, из пределов которого не может вырваться ничего, включая свет и радиоволны, а следовательно, их крайне сложно изучить. Получается, что чёрные дыры фактически вырезаны из нашей Вселенной "космической цензурой", и многие учёные предлагают просто не обращать на них внимания, как на несуществующие для любых практических целей объекты.

"Гипотеза "космической цензуры" гласит, что пока сингулярность остаётся скрытой за горизонтом событий, она не вступает в противоречие с общей теорией относительности, – говорит в пресс-релизе один из авторов нового исследования Маркус Кунеш (Markus Kunesch) из Кембриджского университета. – До тех пор пока действует эта гипотеза, можно смело предсказать будущее Вселенной за пределами чёрных дыр, что мы и пытаемся сделать в физике в настоящее время".

Но если предположить, что сингулярность может существовать за пределами горизонта событий, она будет представлять собой объект, стремящийся к бесконечной плотности, который можно будет наблюдать со стороны. И пока телескопы не наблюдают ничего подобного в окрестностях нашей галактики, физики-теоретики предположили, что такая "голая сингулярность" может скрываться в неизвестных нам измерениях.

"Если окажется, что голая сингулярность существует, это полностью разрушит общую теорию относительности, потому что она потеряет всякую предсказательную силу и не сможет более объяснять устройство Вселенной", – говорит другой соавтор работы Саран Туниасувунакул (Saran Tunyasuvunakool).

Теория Эйнштейна ничего не говорит о том, в скольких измерениях существует наша Вселенная. Мы воспринимаем окружающий мир в трёх измерениях, которые в дополнении с четвёртой величиной – временем, образуют полотно пространства-времени, колебания которого поймали детекторы обсерватории LIGO. Но, например, согласно теории струн, может существовать до 11 измерений, одни из которых проявляют себя в масштабах космоса, а

Читать полностью…

В Космосе

Неизвестное и самое интересное о космосе

5. Черная дыра – самый яркий объект во всей Вселенной.
Внутри черной дыры сила гравитации настолько велика, что из неё невозможно вырваться даже свету. По логике вещей, дыра должна быть не заметна на небе вовсе. Однако, во время вращения дыры кроме космических тел поглощают еще и газовые облака, которые и начинают светиться, закручиваясь по спирали. Так же метеоры, попадая в черные дыры, загораются от неимоверно резкого и быстрого движения.

6. Свет нашего Солнца, который мы видим каждый день, имеет возраст около 30 тысяч лет. Энергия, получаемая нами от этого небесного светила, образовалась в ядре Солнца около 30 тыс. лет назад. Именно вот столько времени и не меньше необходимо фотонам, что бы пробиться из центра на поверхность. А вот после «освобождения» им надо всего лишь 8 минут, что бы добраться до поверхности Земли.

7. Мы летаем в пространстве космоса со скоростью около 530 км в секунду. Внутри Галактики планета движется со скоростью около 230 км в секунду, сам Млечный Путь летит в космосе со скоростью 300 км в секунду.
8. Нам на головы каждый день «падает» около 10 тонн космической пыли.

9. Во всей Вселенной существует более 100 миллиардов галактик. Есть шанс, что мы не одиноки.
10. Интересный факт: каждый день на нашей планете падает около 200 тысяч метеоритов!
11. Средняя плотность веществ Сатурна в два раза меньше, чем плотность воды. Это значит, что, если опустить эту планету в стакан с водой, то она будет плавать на поверхности. Вы можете это проверить, только, конечно, если найдете соответствующий стакан.
12. Солнце «худеет» на миллиард килограммов в секунду. Это связано с солнечным ветром – потоком частиц, которые двигаются с поверхности этой звезды в разные направления.
13. Если бы захотели на машине добраться до ближайшей звезды после Солнца – Проксима Центавра, то нам, при скорости 96 км/ч, понадобилось бы около 50 миллионов лет.

14. Даже на Луне происходят землетрясения, которые именуются как лунотрясения. Но, все же, в сравнении с земными они ничтожны слабые. Ежегодно подобных лунотрясений насчитывается более 3 000, однако этой совокупной энергии хватило бы только на небольшой салют.

15. Сильнейшим магнитов во всей Вселенной считается нейтронная звезда. Её магнитное поле в миллионы миллиардов раз больше, чем поле нашей планеты.

16. Оказывается, что в нашей Солнечной системе существует тело, напоминающее нашу планету. Его именуют Титаном, и он является спутником планету Сатурн. Он также имеет реки, моря, вулканы, плотную атмосферу, как и наша планета. Удивительно, но даже расстояние между Титаном и Сатурном равно расстоянию между нами и Солнцем, и даже соотношение веса этих небесных светил равно соотношению веса Земли и Солнца.
Все же разумной жизни на Титане даже не стоит искать, потому, как его водоемы подвели: они состоят в основном из пропана и метана. Но все же, если последнее открытие получит подтверждение, то можно будет утверждать, что на Титане существуют примитивные формы

Читать полностью…

В Космосе

ПУЛЬСАРЫ ЗАСТАЛИ ЗА ПЕРЕХОДОМ В РЕЖИМ ПРОПЕЛЛЕРА

Астрофизики проследили, как быстро крутящиеся вокруг своей оси нейтронные звёзды “уходят в тень”. Международная группа астрофизиков изучила очень быстрое угасание пульсаров (быстровращающихся нейтронных звёзд). Такое угасание после серии мощных вспышек называют переходом в режим пропеллера.

Работа примечательна тем, что даёт первое в истории практическое подтверждение теоретического предсказания такого перехода, сделанного более сорока лет назад. Соответствующая статья опубликована в журнале Astronomy &Astrophysics.

Учёные с помощью рентгеновского космического телескопа Swift изучили пульсары 4U 0115+63 и V 0332+53, излучающие в рентгеновском диапазоне. Они принадлежат к особому типу источников — вспыхивающих рентгеновских пульсаров. Такие пульсары гаснут не плавно и линейно, а по слабо предсказуемой “траектории”. Они то слабо светятся в рентгеновском диапазоне, то ярко вспыхивают, а временами и совсем пропадают. Столь неожиданные и странные переходы вызваны их магнитными полями и температурой окружающего нейтронные звезды вещества.

Изученные пульсары излучают так нестабильно, потому что у каждого из них довольно необычная звезда-компаньон — экзотического класса Ве. Ве-звезда вращается вокруг своей оси настолько быстро, что периодически вдоль её экватора образуется огромный газовый диск. Газ начинает стремительно падать на нейтронную звезду. От этого интенсивность её излучения резко возрастает — происходит вспышка, которую легко наблюдать даже за миллиарды световых лет. Постепенно газовый диск Ве-звезды расходуется, падение газа на соседнюю нейтронную звезду замедляется. Из-за этого мощное магнитное поле нейтронной звезды уже способно отбрасывать падающий газ во все стороны. Что для наблюдателя с Земли выглядит несколько похоже на вращение гигантского пропеллера.

В новом исследовании российские учёные смогли измерить интенсивность излучения (светимость), ниже которой пульсар переходит в “режим пропеллера”. В нём количество вещества, падающего на нейтронную звезду, намного меньше, чем в излучающем режиме. Светимость, которая сопровождает вход в этот режим, зависит от силы магнитного поля и от периода вращения пульсара. Последний составляет 3,6 секунды для 4U 0115+63 и 4,3 секунды для V 0332+53.

Опираясь на эти данные, учёные рассчитали напряжённость магнитного поля обеих нейтронных звёзд. Однако сила расчётного магнитного поля оказалась несколько не соответствующей наблюдаемому падению светимости пульсаров — ожидалось потускнение в 400 раз, а в реальности оказалось лишь в 200 раз.

Авторы предполагают, что возможная причина этого — тот факт, что нагретая вспышкой поверхность нейтронной звезды охлаждается и тем самым служит дополнительным источником излучения. Другая возможная причина — эффект пропеллера не может полностью заблокировать перетекание вещества от обычной звезды на нейтронную.

Читать полностью…

В Космосе

Пожалуй, лучшее селфи во вселенной

Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя фотография «Вояджера-1». 6 миллиардов километров от Земли.

Читать полностью…

В Космосе

можно ли «засадить» органическими составляющими планету, чтобы на ней зародилась жизнь. Ученые все еще не уверены в том, как появилась жизнь на Земле. Если это произошло именно таким образом, то кометы и астероиды вполне могли служить транспортным средством. То же самое касается и воды. Определенно, на Земле много воды, однако на вопрос, появилась ли она от столкновений Земли с астероидами и кометами, или с самого начала была на планете, мы пытаемся ответить, изучая образцы комет.

В своем недавнем исследовании профессор Натали Старки (Natalie Starkey), Планетарные и Космические Науки Открытого Университета, провела исследование различных форм связи водорода, карбона, азота и килорода, содержащихся в образцах комет, собранных NASA. Связи между этими элементами открывают информацию о месте формирования кометы относительно Солнца. Они так же могут рассказать о прошлом кометы. Например, подвергалась ли она когда-либо воздействию высоких температур, то есть, путешествовала ли она когда-либо рядом с Солнцем. Так же с помощью этих образцов можно больше узнать о том, как и где формировались планеты, и каким образом в общую картину вписываются вода и органические вещества.

Читать полностью…

В Космосе

Космос глазами советского художника.

Представляем вам иллюстрации на тему космоса от известного советского художника Николая Михайловича Кольчицкого. Его работы были размещены во многих известных журналах, таких как «Техника – молодёжи», «Огонёк», «Юный техник». Помимо этого, Николай Кольчицкий иллюстрировал книги, рассказы и очерки.

Читать полностью…

В Космосе

и, которые являются наиболее распространенным типом планет возле других звезд солнечного типа».

Другими словами, верно то, что в нашей Солнечной системе нет планет между двумя и десятью земными массами, и это само по себе является редкостью. Но это не самый лучший способ классификации планет; они просто входят в диапазон нептунианских миров, а у нас есть три таких. Выходит, мы совсем неправильно рассматривали проблему пропавших суперземель. Если рассмотреть ее правильно, интересных вывода будет два: то, что мы называли суперземлями, вообще на Землю не похоже, и проблемы никакой нет, потому что в нашей Солнечной системе ничего и не пропадало.

Читать полностью…

В Космосе

ЗЕМЛЯ МОЖЕТ БЫТЬ «ПОТЕРЯННОЙ СУПЕРЗЕМЛЕЙ» СОЛНЕЧНОЙ СИСТЕМЫ

Еще совсем недавно мы думали, что наша Солнечная система является прототипом, по которому должны быть выстроены и другие планетарные системы. Мы думали, что существует два класса планет: твердые миры, которые мы находим сгруппированными во внутренних областях, и газовые гиганты, которые находятся подальше. Начиная с 1990-х годов мы начали обнаруживать планеты и возле других звезд, а потом выяснили, что наша Солнечная система не совсем нормальная. В новой работе, которая была принята к публикации на этой неделе, двое астрофизиков из Колумбийского университета предприняли попытку выяснить, почему так.

Оказывается, иметь небольшие твердые планеты во внутренней солнечной системе и большие газовые гиганты во внешней, не совсем нормально. Газовые гиганты и твердые планеты можно обнаружить повсюду, и у крупных планет ровно такие же шансы оказаться поближе к своей звезде, как и у малых. Планеты, которые мы находили, показали, что ничто не запрещает газовым гигантам становиться «горячими Юпитерами», даже больше — они поступают так довольно часто. Второй сюрприз удивляет еще больше, и за него стоит поблагодарить новаторскую работу космической обсерватории «Кеплер» NASA. Хотя твердые миры размером с Землю — и покрупнее, и поменьше — так же распространены, как миры размером с Нептун и Юпитер, есть и третий класс планет, самый распространенный из всех. Между размерами Земли и Нептуна есть опция, которую мы проглядели: суперземля (или мини-нептун). И как оказалось, суперземель больше, чем любых других планет.

Первый вопрос, который у нас возник: почему этот класс удивительных миров такой густо населенный? Но по мере того, как улучшались наши модели планетарных образований возле звезд, мы начинали видеть, что вместе с выживающими планетами появляется и гладкое распределение. Миры, которые были слишком мало массивными, как правило, поглощались, выбрасывались или забрасывались на Солнце другими телами. По мере увеличения массы планеты увеличивалась и вероятность их выживания. Чем массивнее мир — желательно, в три раза массивнее Земли — тем вероятнее, что его гравитационное притяжение будет обволакивать его водородом и гелием. Эти миры с промежуточной массой должны быть где-то между твердыми планетами и газовыми гигантами. Но если вы будете искать все более массивные миры, вы увидите, что их становится все меньше и меньше. Вселенная не плодит чрезмерное количество массивных миров просто потому, что у нее есть сырье. Для образования одного только Юпитера у нее ушло бы 317 наших планет.

По мере того, как улучшалось наше понимание планетарного образования, у нас начали появляться вопросы по существу. Если суперземли были самым распространенным типом миров, то что такого особенного в Солнечной системе, что у нас нет ни одной суперземли? Варианты интересные, но разочаровывающие:

• Молодые суперземли сформировались, но не выжили, возможно, были выброшены вместе с миграцией гигантских планет.
Вся внутр

Читать полностью…

В Космосе

веческом мозге. Другими словами, эти совокупные числа — для человеческого мозга и для крупных, полностью сформированных конечных галактик — являются, по сути, сравнимыми друг с другом.

Однако существенное различие состоит в том, что нейроны внутри мозга имеют связанные и определенные структуры, тогда как звезды внутри связанных галактик или групп быстро перемещаются, двигаясь либо навстречу друг другу, либо удаляясь друг от друга, что происходит под влиянием всех остальных звезд и масс внутри галактики. Мы полагаем, что подобные метод случайного отбора источников и ориентаций не дает возможности сформироваться любым устойчивым сигнальным структурам, однако это может быть необходимым, а может и не быть. Основываясь на нашем знании о том, как возникает сознание (в частности, в мозге), я считаю, что просто недостаточное количество согласованной информации перемещается между различными образованиями для того, чтобы это стало возможным.

Вместе с тем, общее количество сигналов, которые могут участвовать в обменах на галактическом уровне в период существования звезд, является привлекательным и интересным, и оно свидетельствует о наличии потенциала относительно того количества информационных обменов, которым располагает другая вещь, о которой нам известно то, что она имеет самосознание. Тем не менее, важно отметить следующее: даже если этого было бы достаточно, то наша галактика была бы эквивалентна новорожденному ребенку, появившемуся на свет всего 6 часов назад — не слишком большой результат. Что касается более крупного сознания, то оно пока еще не появилось.

Более того, мы можем сказать, что концепция «вечности», включающая в себя все звезды и галактики во вселенной является, несомненно, слишком большой, если учитывать существование темной энергии и того, что нам известно относительно судьбы нашей вселенной. К сожалению, единственный способ это проверить основан либо на моделировании (у этого варианта есть свои собственные внутренние недостатки), или на сидении, ожидании и наблюдении за тем, что происходит. Пока более крупный по масштабу разум не направит нам очевидный «разумный» сигнал, у нас будет оставаться только выбор графа Монте-Кристо: ждать и надеяться.

Итан Зигель является основателем блога Starts With A Bang, обозревателем НАСА и профессором Колледжа Льюиса и Кларка (Lewis & Clark).

Читать полностью…

В Космосе

Является ли сама вселенная живой?

Вы уже встречались с подобными аналогиями: атомы напоминают солнечные системы, крупномасштабные структуры вселенной похожи на нейроны в человеческом мозге, а есть еще любопытные совпадения: количество звезд в галактике, галактик во вселенной, атомов в клетке и клеток в живом существе примерно одинаково (от 10^11 до 10^14). Возникает следующий вопрос, как его сформулировал и Майк Хьюз (Mike Paul Hughes):

Не являемся ли мы просто клетками мозга более крупного создания вселенского масштаба, которое еще не обладает самосознанием? Как мы можем это узнать? Как мы можем это протестировать?

Поверите вы или нет, но идея, что общая сумма всего во вселенной является разумным созданием, существует уже очень давно и является частью концепции Вселенной Марвел (Marvel Universe) и конечного существа — Вечности.

Сложно дать прямой ответ на такого рода вопрос, потому что мы не уверены на 100% в том, что, на самом деле, означает сознание и самосознание. Но у нас есть уверенность относительно небольшого количества физических вещей, которые могут помочь нам найти наилучший из возможных ответов на этот вопрос, включая ответы и на следующие вопросы:

— Каков возраст Вселенной?

— Как долго различные объекты вынуждены направлять друг другу сигналы и получать сигналы друг от друга?

— Насколько большими являются самые крупные структуры, связанные гравитацией?

— И каким количеством сигналов связанные и несвязанные структуры различных размеров будут вынуждены обладать для того, чтобы обмениваться друг с другом информацией любого вида?

Если мы проведем такого рода подсчеты и затем сравним их с теми данными, которые возникают даже в самых простых структурах, похожих на мозг, то мы тогда, по крайней мере, сможем дать наиболее близкий из всех возможных ответов на вопрос о том, существуют ли где-либо во вселенной большие космические структуры, наделенные разумными способностями.

Вселенная с момента Большого взрыва существует примерно 13,8 миллиарда лет, и она с того времени расширяется весьма быстрыми (но снижающимися) темпами, а состоит она примерно на 68% из темной энергии, на 27% из темной материи, на 4,9% из нормальной материи, на 0,1% из нейтрино и примерно на 0,01% из фотонов (Приведенное процентное соотношение раньше было иным — в тот момент, когда материя и радиация были более значимыми).

Поскольку свет всегда передвигается со скоростью света — через расширяющуюся вселенную, — мы имеем возможность определить, какое количество различных коммуникаций было осуществлено между двумя объектами, захваченными этим процессом расширения. Если мы определим «коммуникацию» как количество времени, необходимого для передачи и приема информации в одном направлении, то это и есть тот путь, который мы можем проделать за 13,8 миллиарда лет:

— 1 коммуникация: до 46 миллиардов световых лет, вся наблюдаемая вселенная;

— 10 коммуникаций: до 2 миллиардов световых лет или около 0,001% вселенной; ближайшие 10 миллионов галактик.

— 100 ко

Читать полностью…

В Космосе

Карл Саган, "Бледно-голубая точка"

Читать полностью…

В Космосе

атерии и антиматерии небольшая доля частиц материи выжила (одна на миллиард проаннигилировавших!), и этого уцелевшего в грандиозной битве остатка хватило, чтобы сделать нас с вами.

Изучение антиматерии

Изучая антиматерию, мы в действительности пристально смотрим на ее различия с материей. Эта маленькая разница позволяет многое узнать о законах Природы. До сих пор не решен вопрос о механизме нарушения симметрии между материей и антиматерией. Вернее, мы знаем, зачем Природа допустила это нарушение (ради нас), а также за счет чего эта разница свойств возникает, но уже 40 лет гадаем, почему все это организовано в Природе подобным образом.

Последние 15 лет разницу распадов тяжелых кварков и антикварков изучали специальные эксперименты в Японии и США. Разогнанные до огромных скоростей электроны и позитроны, сталкиваясь, рождали так называемые B-мезоны, содержащие кварк третьего поколения (1 млрд пар B-мезонов за 10 лет работы). В этих экспериментах обнаружили большую разницу в распадах B-мезона и анти-B-мезона и измерили ее с хорошей точностью. В последние годы к этим усилиям подключился специальный эксперимент на Большом адронном коллайдере, а еще через два года в Японии заработает супер В-фабрика. Точность измерений возрастет, и, возможно, будет найдено что-то новое в несоответствии свойств материи и антиматерии.

Сегодня вряд ли кто-нибудь возьмется прогнозировать, что будет найдено и как это позволит развить наши знания. И уж тем более, никто не сможет предсказать, как новые знания можно использовать в нашей жизни. Можно лишь воспользоваться предыдущим опытом человечества: все научные открытия, какими бы никчемными с практической точки зрения они не казались поначалу, рано или поздно приносили пользу. Достаточно вспомнить ту же квантовую механику, без которой не было бы транзисторов, микрочипов и, соответственно, 99% современных технологий...

Использование антиматерии

Сегодня мы применяем, по крайней мере, самую легко получаемую античастицу - позитрон, для некоторых вполне практичных задач. Одно из своих применений позитроны нашли в медицине для диагностики онкологических заболеваний. Помимо упомянутого выше калия-40, существуют множество радиоактивных изотопов, испускающих позитроны, которые, вылетев из ядра, мгновенно аннигилируют с электронами из соседних атомов, превращаясь в два фотона. Пациент принимает небольшое количество аналога глюкозы с радиоактивной примесью (доза очень маленькая и не наносит вреда здоровью), глюкозоподобное вещество накапливается в активно растущих клетках, каковыми и являются раковые клетки. Именно в опухоли и будет происходить частая электрон-позитронная аннигиляция, а найти точное место в организме, откуда часто вылетают фотоны, остается технической задачей (причем, делается это бесконтактно - вокруг пациента проезжает сканирующий прибор, улавливающий фотоны). Этот метод, позволяющий диагностировать и точно определять местоположение опухоли, называется позитронно-эмиссионной томографией (ПЭТ).

Позитроны

Читать полностью…

В Космосе

На грани аннигиляции: что делать с антиматерией

Мы настолько привыкли к мысли, что антиматерия является либо элементом фантастических романов (сверхэффективное ракетное топливо или разрушительное оружие), либо гипотетической субстанцией в извращенных мозгах физиков, что поверить в ее реальность в нашей повседневной жизни довольно трудно. В крайнем случае, мы допускаем, что физики действительно получают ее в секретных лабораториях, но сама по себе она не встречается. Попробуем развенчать это убеждение.

Античастицы не такая уж редкость и возникают в окружающем мире без нашего участия. Они так же стабильны, как частицы материи, а живут в нашем мире ничтожно мало лишь потому, что, стоит им столкнуться с атомами, как они аннигилируют с образующими его частицами: небольшая вспышка света, незаметная для глаза, и больше никаких следов.

Самая распространенная античастица - антинейтрино, но проблема аннигиляции ее как раз не касается: слишком малό ее взаимодействие с любыми частицами. Сотни нейтрино и антинейтрино содержатся в каждом кубическом сантиметре нашей Вселенной. Посчитайте, сколько их внутри вас, и порадуйтесь, что, по счастью, они почти никак не взаимодействуют с материей и не наносят нам вреда.

Античастицы электронов, позитроны, появляются в космических лучах, возникают в грозовых разрядах, а также в распадах вполне распространенных на Земле элементов. К примеру, изотоп калия-40, правда довольно редко, всего в 0,001% случаев его распадов, испускает позитрон. Благодаря небольшому содержанию этого изотопа в природной смеси в нашем организме рождается около одного позитрона в минуту. Вреда здоровью это не наносит; гораздо больший риск мутаций в организме представляют космические лучи, в состав которых входят антимюоны, сотни которых пролетают через нас за секунду. В космических лучах наблюдаются также антипротоны, которые, пусть редко, рождаются в нашей Галактике при ядерных взаимодействиях в межзвездной среде. Более того, какая-то их часть стабильно удерживается в магнитном поясе Земли (на высокой орбите, где нет протонов, с которыми можно было бы проаннигилировать).

Правда, все вышеописанное - это лишь примеры античастиц, а не антиатомов или антивещества. А могут ли существовать антимиры где-то далеко в нашей Вселенной? Может быть, на далекой антипланете антилюди озабочены проблемой анти-антиматерии (нашей обычной материи) и сейчас тоже размышляют о нашем гипотетическом существовании?

Как была открыта антиматерия

Впервые понятие «антиматерия» было придумано английским физиком Артуром Шустером в 1898 году, сразу после открытия Джозефом Томсоном электрона. Томсон обнаружил, что катодные лучи образованы входящими в состав вещества тождественными друг другу отрицательно заряженными частицами. Шустер задался вопросом, а не существует ли симметричный аналог электрона (названный им антиэлектроном), заряженный положительно. Из его гипотезы сразу следовала идея существования антиматерии, внутри которой придуманные антиэлектроны и должны жит

Читать полностью…

В Космосе

Старт космического корабля

Читать полностью…

В Космосе

Звезда, вращающаяся вокруг своей мертвой сестры - черной дыры, всего за 4,5 часа

Читать полностью…

В Космосе

жизни. Под поверхностью Титана существует океан, который состоит на 90% из воды, остальные 10% могут быть сложными углеводородами. Есть предположение, что именно эти 10% могут дать начало простейшим бактериям.

17. Если бы Земля вращалась вокруг Солнца в обратную сторону, то год был бы на два дня короче.
18. Продолжительность полного лунного затмения составляет 104 минуты, в то время, когда продолжительность полного солнечного – всего-то не более 7,5 минут.

19. Исаак Ньютон впервые изложил физические законы, которым подчиняются искусственные спутники. Впервые они были опубликованы в работе «Математические начала натуральной философии» летом 1687 года.

20. Самый смешной факт! Американцы потратили не один миллион долларов, что бы изобрести такую ручку, которая писала бы в космосе. Русские же пользовались в невесомости карандашом, не внося никаких изменений в него.

Космос – величайшая тайна, которую человечество будет всегда желать разгадать. Он тянет своими необычайными свойствами и загадками. Сегодня мы раскрыли всего ничего, но, надеюсь, что Вселенная стала для вас более доступной и интересной.

Читать полностью…

В Космосе

«КАССИНИ» ГОТОВ «ВГРЫЗТЬСЯ» В КОЛЬЦА САТУРНА

Космический аппарат НАСА «Кассини» (Cassini) вскоре перейдет к очень интересной части с своей миссии.

Инженеры непрерывно увеличивали высоту орбиты аппарата над поверхностью Сатурна в течение этого года, чтобы увеличить наклон орбиты по отношению к экватору планеты и её кольцам.

И теперь 30 ноября, воспользовавшись помощью гравитации спутника Сатурна Титана, «Кассини» начнет первый этап финальной части своей миссии.

Начиная с 30 ноября и по 22 апреля следующего года, «Кассини» будет двигаться по орбите высоко над и под полюсами Сатурна, погружаясь каждые семь суток – в общей сложности запланировано 20 таких погружений – в неизведанную область близ внешнего края основных колец гигантской планеты.

Во время этих многочисленных погружений в кольца Сатурна научные инструменты «Кассини» будут напрямую измерять число частиц материала колец и молекул разреженных газов, наполняющих пространство в окрестностях колец.

В течение первых двух орбит зонд пройдет прямо сквозь экстремально тусклое кольцо, формируемое в результате бомбардировки двух небольших спутников Сатурна, Эпиметея и Япета, крохотными метеорами.

В марте и апреле аппарат пройдет рядом с наружной частью кольца F Сатурна на расстоянии 7800 километров от него.

Триумфальным завершением исторической миссии аппарата «Кассини» должно стать гибельное погружение аппарата в атмосферу Сатурна, во время которого будет произведено большое количество измерений параметров внутренних слоев атмосферы газового гиганта.

Это погружение запланировано на 15 сентября 2017 г.

Читать полностью…

В Космосе

Solar System by Vadim Sadovski

Читать полностью…

В Космосе

Друзья! Эта очаровательная обезьянка 🐒приглашает Вас познакомиться с Жестяной банкой, в которой собран лучший юмор со всего интернета с возможностью его оценить. Смотрите!
/channel/takecan

Читать полностью…

В Космосе

Ваш дом полон космической пыли

Недавние исследования позволяют предположить, что менее 10 процентов пыли, с которой мы боремся во время еженедельной уборки, - это частицы комет и астероидов; значительно большую часть ее составляют кометы семейства Юпитера. Эти кометы, созданные из льда и пыли, вращаются вокруг Солнца недалеко от Юпитера. Скорее всего, они попали в Солнечную систему после столкновений с другими кометами пояса Койпера, главного пояса комет, который расположен за Нептуном.

Падение космической пыли на Землю может вызвать метеорный дождь (падающие звезды). К примеру, ежегодные метеорные потоки Персеиды и Леониды мы наблюдаем, когда Земля входит в пыльные остатки комет Свифта-Туттля (Swift-Tuttle) и Темпеля-Туттля (Tempel-Tuttle). Кометная пыль путешествует на высокой скорости, иногда более 150 000 километров в час. Атмосфера Земли замедляет ее движение, при этом силы трения достаточно для того, чтобы самые большие части этой пыли сгорали со вспышками света. Возможно, причина этого – во внезапном скачке давления во время вхождения в атмосферу Земли.

NASA регулярно использует воздушное судно ER2 , исследовательскую версию самолета-шпиона U2, для полетов в стратосферу (около 20 км, в два раза выше, чем летает пассажирский флот) с целью сбора космической пыли. Сама по себе техника сбора достаточно проста. Поднявшись на нужную высоту, пилоты открывает контейнеры, расположенные под крылом, внутренняя поверхность которых обработана таким образом, что частицы космической пыли прилипают к ней. На Земле NASA в стерильной лаборатории извлекает космическую пыль из коллекторов, чтобы ученые могли изучить ее.

Эти частицы пыли интересуют ученых, так как они предлагают наилучшие возможности для изучения комет по образцам. Сбор пыли при помощи ER2 - наиболее малозатратный способ получить эти образцы. Другой метод подразумевает запуск космического корабля, который долетит до кометы и вернется, пройдя через ее хвост из пыли и льда, или даже приземлившись на ее поверхность. Только однажды удалось получить образцы таким способом – это была миссия NASA Stardust (Звездная Пыль).

Такие миссии, несмотря на их высокую стоимость, позволяют получить самые чистые образцы объектов Солнечной Системы. Космический корабль служит своеобразным коконом, защищая образцы и сохраняя их в первозданно виде во время путешествия в космосе и во время вхождения в атмосферу Земли.

Кометы содержат первичную пыль, которая сформировала Солнечную Систему, и, оставаясь на большом расстоянии от Солнца в течение большей части своей жизни, они работают подобно морозильным камерам, сохраняя пыль, возраст которой - миллиарды лет. Изучая ее, мы можем совершить путешествие во времени назад, к моменту рождения Солнечной Системы, и понять строение и состав всего, что мы знаем, в том числе ранних форм органических веществ и воды.

Органические вещества – химические компоненты, содержащие углеродно-водородные связи – на самом деле находятся во всей Вселенной. Один из больших вопросов:

Читать полностью…

В Космосе

Каким «видит» мир объект, летящий со скоростью света?

Как известно скорость света – это хоть и большая, но все же конечная величина. Существуют вполне материальные объекты (например, фотоны – частицы из которых и состоит свет), которые двигаются со скоростью света. Как же «выглядит» мир «глазами» таких быстрых объектов?

В обсуждении этого вопроса самое важное место занимает Специальная Теория Относительности (СТО). Согласно выводам этой теории (которые на данный момент хорошо подтверждены экспериментальными фактами), при движении некоторого объекта со скоростью света, сколь угодно длительный промежуток времени для этого объекта становится равным нолю.

Важно отметить, что любой промежуток времени, даже миллиарды лет, для объекта разогнавшегося до скорости света обратиться именно точно в ноль, а не в бесконечно малый промежуток времени. А что это значит, если промежуток времени обратился в нулевой?

Это означает, что невозможно никакое действие, в том числе и наблюдение, видение, зрение и так далее. Таким образом, объект летящий со скоростью света ничего не увидит. И вообще этот объект фактически даже не осознает факт своего существования, и существования мира вокруг него, ведь на это тоже нужно время. Хотя относительно Земли, например, данный объект будет вполне себе существовать, и возможно в течении очень даже приличного промежутка времени путешествовать со скоростью света.

Фотоны – это такие объекты, которые от момента своего испускания и до самого поглощения летят только со скоростью света, т.е. они не тратят время на разгон и торможение, поэтому вся их жизнь для них длиться ноль времени. Таким образом, мир глазами фотона таков: совпадающие моменты рождения и смерти фотона, не дают ему возможности «понять» что мир вообще существует.

Заметим одну тонкость: придирчивый читатель мог отметить, что до сих пор мы обходили вопрос того, относительно чего должен двигаться объект со скоростью света, чтобы всё это стало правдой. Но этот вопрос действительно не имеет значения, так как согласно основным постулатам СТО, если уж объект разогнался до скорости света относительно хотя бы одной системы отсчета или тела, то его скорость во всех системах отсчета становится равной скорости света.

Читать полностью…

В Космосе

енняя Солнечная система образовалась до того, как Юпитер двинулся наружу, и твердые миры оказались небольшими, потому что сформировались поздно, когда весь материал уже был потрачен.
• Наши массивные газовые гиганты и Солнце заграбастали первый планетообразующий материал, не оставив суперземле и шанса.
• Однако используя новейшие разработки в области вероятностного прогнозирования, ученые Чжиньчжинь Чен и Дэвид Киппинг пришли к новому, интересному и полному объяснению. Возможно, мы очень ошибались.

В большинстве случаев, когда мы наблюдали за планетами, мы знали либо массу, либо радиус, но не оба параметра одновременно. Но не зная одного параметра, невозможно понять, с каким миром мы имеем дело, с твердым вроде Земли или с газообразным вроде Нептуна. Представьте два совершенно разных мира, каждый из которых в три раза массивнее Земли: у одного есть твердое ядро в 2,8 земной массы с тонкой оболочкой газа вокруг, а у другого твердое ядро в 1,5 земной массы и столько же газа в атмосфере. Первая планета будет похожей на Землю, но на деле является суперземлей: больше, массивнее и с тонкой атмосферой. Вторая планета будет больше похожа на мини-нептун: 10 000 километров «атмосферы» над твердой поверхностью во всех направлениях, а давление на поверхности мгновенно раздавит любую известную нам жизнь.

Выводы Чена и Киппинга позволяют точно провести границу между суперземлей и мини-нептуном. Они представили схему классификации, которая намного превосходит наши предыдущие ужасные оценки. Их вариант:

• Любой мир, массой меньше 2,0 ± 0,6 земной, вероятнее всего, будет твердым.
• Любой мир между 2,0 и 130 земными массами будет похожим на Нептун.
• Все, что массивнее 8% нашего Солнца, будет звездой.

Вот и все. Другая классификация, по мнению астрофизиков, будет полной ерундой.

Также это говорит нам, что большинство миров, которые мы называем «суперземлями», на самом деле расположены на маломассивном конце нептуноподобных миров, что подтверждает давнее подозрение. Для планет, найденных методом транзита, твердый мир с массой в 2,0 земных будет примерно на 25% больше в радиусе, чем Земля; если больше, то это почти наверняка будет нептуноподобный мир с массивной водородно-гелиевой оболочкой.

И знаете, почему в нашей Солнечной системе нет никаких суперземель? Потому что с массами в 50% и 40% от этого транзитного порога, соответственно, Земля и Венера являются как раз теми суперземлями, которые мы ищем: твердыми планетами с большой массой. Следующий «класс» планет будет нептуноподобными мирами, и у нас есть три таких.

«Большое число обнаруженных планет с массой в 2-10 земных часто приводится в качестве доказательства, что суперземли очень распространены и наша Солнечная система, получается, необычна», пишут авторы работы. «Однако если границу между мирами земного и нептунианского типа сдвинуть до 2 земных масс, Солнечная система больше не будет необычной. По нашему определению, только три из восьми планет Солнечной системы являются нептунианскими мирам

Читать полностью…

В Космосе

Удивительные фотографии планеты c борта Международной космической станции (МКС).

Читать полностью…

В Космосе

ммуникаций: почти 300 миллионов световых лет или неполная дистанция до Скопления Кома (Coma Cluster), содержащего примерно 100 тысяч галактик.

— 1000 коммуникаций: 44 миллиона световых лет, почти до границ Сверхскопления Девы (Virgo cluster), содержащего, приблизительно, 400 галактик.

— 100 тысяч коммуникаций: 138 тысяч световых лет или почти вся протяженность Млечного пути, но не выходя за его пределы.

— 1 миллиард коммуникаций — 14 световых лет или только ближайшие 35 (или около того) звезд и коричневых карликов; это показатель изменяется по мере движения звезд внутри галактики.

Наша локальная группа имеет гравитационные связи — она состоит из нас, Андромеды, Галактики Треугольника (Triangulum galaxy) и еще, возможно, 50-ти других, намного меньших по размеру карликов, и в конечном итоге все вместе они сформируют единую связанную структуру размером в несколько сотен тысяч световых лет (Это будет в большей или меньшей мере зависеть от величины связанной структуры). Большинство групп и кластеров в будущем ожидает такая же судьба: все связанные галактики внутри них вместе сформируют единую, гигантскую структуру размером в несколько сотен тысяч световых лет, и эта структура будет существовать в течение, примерно, 110^15 лет. В тот момент, когда возраст вселенной будет в 100 тысяч раз превышать ее нынешний показатель, последние звезды израсходуют свое топливо и погрузятся в темноту, и только очень редкие вспышки и столкновения будут вновь вызывать синтез, и так будет продолжаться до тех пор, пока сами объекты не начнут гравитационно отделяться — во временных рамках от 10^17 до 10^22 лет.

Однако эти отдельные большие группы будут со все большей скоростью удаляться друг от друга, и поэтому у них не будет возможности встретиться или установить коммуникацию друг с другом в течение длительного периода времени. Если бы мы, к примеру, направили сигнал сегодня из нашего места со скоростью света, то мы смогли бы достичь лишь 3% галактик наблюдаемой в настоящее время вселенной, а остальное уже находится за пределами досягаемости для нас. Поэтому отдельные связанные группы или кластеры — это все, на что мы можем надеяться, а самые маленькие, как мы — а таких большинство — содержат около одного триллиона (10^12) звезд, тогда как самые крупные (как в будущем Скопление Кома) содержат около 10^15 звезд.

Но если мы хотим обнаружить самосознание, то лучшим вариантом будет сравнение с человеческим мозгом, который имеет около 100 миллиардов (10^11) нейронов и, по меньшей мере, 100 триллионов (10^14) нейронных связей, тогда как каждый нейрон вспыхивает примерно 200 раз в секунду. Если исходить из того, что человеческая жизнь, в среднем, продолжается где-то 2-3 миллиарда секунд, то получается очень много сигналов за весь период! Потребуется сеть из триллионов звезд в рамках объема в миллион световых лет на протяжении 10^15 лет только для того, чтобы получить нечто сопоставимое с тем количеством нейронов, нейронных связей и объемом передаваемых сигналов в чело

Читать полностью…

В Космосе

Гармония человека и Луны

Читать полностью…

В Космосе

используются также в материаловедении. С помощью специального позитронного микроскопа, стреляющего позитронами по изучаемому объекту, можно исследовать поверхности полупроводников для их применения в электронике. Можно также изучать разнообразные образцы, определять «усталость» материалов и находить в них микродефекты. Так что эта, казалось бы, совершенно абстрактная область знания служит вполне конкретным интересам людей.

Действительно ли в антиматерии скрыта колоссальная энергия?

Здесь писатели-фантасты не преувеличивают. Давайте оценим эту энергию. Вспомнив, что масса и энергия эквивалентны, сравним разные виды энергии. Начнем с энергии химических связей: сжигая, к примеру, 1 грамм угля, мы получим энергию, составляющую примерно одну миллионную от его массы. Немного! В ядерной энергии скрыт гораздо больший потенциал: из 1 грамма урана, запустив цепную реакцию, можно извлечь энергию, достигающую величины 0,001 (т. е. одной тысячной) в граммовом эквиваленте - правда, это в идеале, в реальности все гораздо скромнее. А вот 1 грамм антиводорода при анигилляции даст 2 грамма энергии! Согласитесь, что это впечатляет - в 1 грамме антиматерии заключено энергии больше чем в 1000 тонн угля. Правда, следует помнить, что на Земле нет залежей антиматерии в отличие от других носителей энергии, а чтобы получить 1 грамм антиводорода потребуется сжечь гораздо больше, чем 1000 тонн угля...

И все же, ракета на антиводородном топливе (одного грамма достаточно, чтобы отправить многотонную ракету на Марс) будоражит воображение. Все это по-прежнему выглядит фантастикой? Судите сами. Антиводород уже реально получают. Пока, правда, в гигантской лаборатории и всего тысячи антиатомов. Причем удержать их в ловушке удается только несколько минут. Но 10 лет назад антиатомы получали лишь десятками и удерживали микросекунды. А еще через 10 лет планируются получить уже количество антивещества, измеряемое микрограммами.

Читать полностью…

В Космосе

ь. Гипотеза Шустера основывалась на соображении, что Природа должна была позаботиться о симметрии между отрицательным и положительным. Убедительный аргумент? В общем-то, не очень... Вот и современники Шустера (а в его время концентрация выдающихся физиков была запредельно высокой) этой идеей, увы, не заинтересовались, и она была надолго забыта...

Лишь спустя 30 лет замечательный английский физик Поль Дирак переоткрыл антиматерию. В отличие от Шустера он не предположил существование антиэлектрона, а нашел его, но не в окружающем мире, а... в своем уравнении! Уравнение Дирака успешно описало релятивистский электрон, но в решениях этого уравнения «вылезла» также положительно заряженная частица, в точности симметричная электрону. Дирак назвал ее позитроном.

Поначалу к идее Дирака, несмотря на явный успех его теории в разрешении многих парадоксов, коллеги отнеслись скептически. Но вскоре позитрон был открыт Карлом Андерсоном в космических лучах: он рождался из энергичных космических фотонов в паре с электроном, а перед последующей аннигиляцией успевал пролететь некоторое расстояние и оставить следы.

Античастицы есть у всех частиц, за исключением истинно нейтральных, таких как фотон (для фотона он же сам и является античастицей), и сегодня все они открыты.

Материя и антиматерия немного разные

Еще до открытия Андерсона, пытаясь найти ответ на вопрос, почему позитроны не наблюдаются в окружающем нас мире, Дирак осознал, что позитроны жить вместе с нами не могут: возникнув где-то рядом, они немедленно аннигилируют с окружающими электронами. Он здраво рассудил, что, раз уж наша Солнечная система построена из электронов и вообще из частиц, то здесь не место античастицам, их надо искать в других галактиках, не соприкасающихся с нашей.

Антигалактики искали и продолжают искать, но пока не находят. Более того, сегодня мало кто верит, что они действительно могут существовать. В чем же причина такой асимметрии Вселенной, в которой материя есть, а антиматерии почти нет?

В 1960-х годах сделали совершенно неожиданное открытие: антиматерия немного отличается от материи. Казалось бы, как же так? Ведь мы только что вывели антиматерию из симметрии между положительным и отрицательным, а никакой симметрии оказывается нет? Ну не совсем... симметрия нарушается только в слабых взаимодействиях, а есть еще электромагнитные и ядерные взаимодействия, которые эту симметрию чтут. Давайте не будем упрекать слабые взаимодействия за эту непочтительность к симметриям, ведь только благодаря ей мы, в отличие от менее удачливых антилюдей, и существуем! К этому выводу в 1967 году пришел Андрей Дмитриевич Сахаров.

Действительно, если бы материя и антиматерия были абсолютно идентичны, то вскоре после Большого Взрыва, в результате которого образовалось одинаковое количество частиц и античастиц, они бы полностью проаннигилировали. В живых остались бы только фотоны, из которых строить мир (и нас с вами) было бы довольно проблематично. На самом деле, благодаря разности свойств м

Читать полностью…

В Космосе

Найден самый яркий из «инопланетных» сигналов

Исследователи нашли самый яркий из быстрых радиовсплесков (FRB). Его источником является галактика VHS7. Отметим, что иногда такие всплески связывают с активностью гипотетического внеземного разума.

С результатами работ немецких, американских и австралийских астрофизиков можно ознакомиться на ресурсе EurekAlert! Исследователями был зафиксирован мощнейший быстрый радиовсплеск. Он длился несколько миллисекунд.

Используемые учеными детекторы позволили определить район, где он возник – им является галактика VHS7. Специалисты отследили изменение длины волны сигнала, а также поляризацию радиоволн. За счет этого были измерены вариации магнитного поля между Землей и галактикой VHS7. Отметим, что, несмотря на все полученные данные, наука пока что не способна объяснить очень высокую яркость FRB.

Отметим, что сейчас большая часть быстрых радиовсплесков не может быть достоверно объяснена. По мнению ряда экспертов, FRB имеют не космическое, а земное происхождение: их якобы могут производить технические устройства. В пользу этой версии говорит то, что свойства многих быстрых радиовсплесков похожи на свойства перитонов (тип быстрых радиоимпульсов), выявленных в 2010 году и имеющих земное происхождение. Более распространенные версии гласят, что FRB могут быть следствием слияния нейтронных звезд или, например, оказаться «последним вздохом» черных дыр. Некоторые же СМИ утверждают, что быстрые радиовсплески есть не что иное, как проявление активности гипотетических инопланетян. Отметим, что эту версию ученые рассматривают в последнюю очередь.

Впервые быстрый радиовсплеск был обнаружен в 2007 году. Сигнал FRB 010724 был чрезвычайно мощным, однако очень коротким – всего несколько миллисекунд. С тех пор исследователи множество раз фиксировали новые FRB.

Ранее, напомним, другая группа ученых пришла к выводу, что с быстрыми радиовсплесками связано мощнейшее гамма-излучение, которое может представлять опасность для жизни на планете. Такие гамма-вспышки длятся намного дольше, чем FRB: от двух до шести минут.

Читать полностью…

В Космосе

«Розетта» нашла на поверхности кометы Чурюмова-Герасименко сухой лед.

Аппарат «Розетта» в 2015 году зафиксировал на поверхности кометы Чурюмова-Герасименко пласт сухого льда (твердого углекислого газа). Об этом 17 ноября сообщает Европейское космическое агентство (ESA).

Пятно площадью 80 метров на 60 метров было зафиксировано 21–22 марта на южной части кометы. Его сфотографировал спектрометр VIRTIS. В апреле в этом месте следов сухого льда уже не было — исследователи полагают, что оно испарилось.

Как пишет ESA, это первый раз, когда ученым удалось непосредственно обнаружить сухой лед на комете. Углекислый газ переходит в твердую форму на поверхности кометы при температуре -193 градуса Цельсия, что затрудняет его обнаружение.

Пласт сухого льда, полагают исследователи, образовался несколько лет назад, когда комета находилась вдали от Солнца. В первой половине 2015 года по мере приближения кометы к звезде в Южном полушарии началось лето, и пласт обнажился, а еще через несколько недель — испарился. По мнению ученых, открытие свидетельствует о существовании на комете, у которой год длится 6,5 земных лет, сезонного цикла изменения состояния углекислого газа.

«Известно, что кометы содержат диоксид углерода, который после воды наиболее распространен в их атмосферах, но невероятно сложно увидеть его в твердой форме на поверхности», — заявил итальянский астрофизик Джанрико Филаккьоне.

Читать полностью…

В Космосе

Хочу поделиться работой)

Читать полностью…
Subscribe to a channel