Mcts-lib
Мы релизнули либу для улучшения генераций за счет MCTS(+10 пунктов по ru General Arena)!
Как это работает?
1. (Инициализация): Представьте, что вы начинаете с первой версии ответа, который модель предлагает. Чтобы не попасть в ловушку одного-единственного мнения с самого начала, модель также добавляет запасной вариант вроде “Я не знаю”. Это как стартовая точка, которая позволяет не зацикливаться на первой попытке.
2. (Selection): Из всех возможных вариантов ответа мы ищем тот, который выглядит самым перспективным, но при этом ещё не был полностью изучен. Это похоже на то, как вы бы выбирали, на какой вопрос или задачу потратить своё время дальше, полагаясь на интуицию и текущие знания.
3. (Self-Refine): Теперь, когда выбрали ответ, мы пытаемся его улучшить. Представьте, что вы показываете свой ответ опытному другу, и он говорит вам, что можно улучшить. Модель делает что-то похожее – она сама генерирует советы и, следуя этим подсказкам, старается улучшить ответ.
4. (Self-Evaluation): После того как ответ был доработан, модель оценивает его. Это как если бы вы сами посмотрели на свой улучшенный ответ и подумали: “Насколько это хорошо? Честно ли я оцениваю свой труд?” Чтобы оценка была объективной, модель специально избегает ставить идеальные баллы, чтобы не обманывать себя.
5. (Backpropagation): Если улучшенный ответ оказался хорош, эта информация передаётся обратно к родительскому узлу и другим связанным ответам. Это как если бы вы поделились своим новым знанием с друзьями, чтобы все в группе тоже стали умнее.
6.Актуализация планов (UCT Update): Когда все оценки обновлены, модель пересматривает свои планы и решает, какие варианты стоит изучить дальше. Здесь работает формула, которая помогает ей оценить, куда лучше направить внимание в следующий раз, чтобы стать ещё более эффективной.
Работает с openapi like apiшками, можно и llamacpp подключить и gpt4o!
github
оригинальный папир
ИТЕРАЦИЯ #0
А мы сегодня запустили первую версию переводчика на лезгинский язык и обратно, можете потыкать прям тут
🔥 Новые модели Vikhr: Приближаемся к локальной gpt-4o-mini, собственный метод алайнмента и Grounded RAG
Мы выпускаем в релиз свои лучшие модели и тулкит алайнмента. который использовался для их тренировки.
Итак, наш флагман - Vikhr-Nemo-12B-Instruct-R-21-09-24 (карточка на HF)
12B модель на основе Mistral-Nemo, с качеством на русском языке в некоторых задачах не хуже gpt-4o-mini и имеет 128к токенов контекста, была специально заалайнена под решение широкого спектра задач на реальных и синтетических вопросах пользователей, включая код, математику, суммаризацию, ризонинг, ответы в специальном формате (JSON/HTML и тд) и многие другие.
Модель получила винрейт 79.8 (относительно gpt-3.5-turbo) на оффлайн бенчмарке Ru-General-Arena, что лучше любой текущей опенсорс модели до 30В для русского языка.
Для достижения такого качества мы собрали большой инструктивный датасет со втроенным CoT, что позволило сильно прочкать ризонинг модели, далее обучили Reward модель, сделали Rejection Sampling и применили собственный метод SMPO (вариация DPO) для выполнения преференс-тюнинга.
Вторая модель - Vikhrmodels/Vikhr-Llama3.1-8B-Instruct-R-21-09-24 (карточка на HF)
Так же обучена Llama-3,1-8B и имеет аналогичный размер контекста в 128k токенов. Винрейт на Ru-Arena-General - 63.9, что делает ее одной из лучших 8B моделей дла русского языка.
Модели обучены работать с RAG
Обе модели имеют уникальную особенность - они заалайнены для работы с RAG, т.е. используя системный промпт и спец. роль documents, вы сможете подавать ей документы в стандартизированной форме (JSON). При этом сам текст каждого документа может быть грязным чанком HTML, Markdown или Plain text формата до 4к символов каждый.
Модели умеют выделять информацию из предоставленных документов самостоятельно, реализуя таким образом "реранкер" на уровне LLM. Это сделано за счет двух-этапного ответа. Первый ответ модели представляет из себя JSON со списокм релевантных идентификаторов документов, а второй, если юзер его запросит, будет уже текстовым ответом модели на вопрос пользователя.
Благодаря такому обучению, на нашем бенчмарке для RAG (судья gpt-4o) Vikhr-Nemo показала качество в RAG задачах даже лучше, чем gpt-4o-mini (цифры в карточках моделей)
SMPO - Simple Margin Preference Optimization
Наш собственный метод выравнивания, разработанный для стабилизации прцоесса PO. Этот метод во многом заимствует идеи IPO, SimPO, C-RLFT, а также содержит собственную функцию потерь для разделения выбранных и отклоненных пар, отказываясь от классической сигмойды.
Основная идея метода заключается в стремлении плавно достичь желаемого уровня margin, не заставляя модель переобучаться, в том числе с помощью добавления балансирующего SFT лосса для выбранных и отклоненных вариантов одновременно.
Тулкит на Github - effective_llm_alignment
Репозиторий содержит скрипты и конфиги которые использовались для всех этапов обучения моделей. он позволяет удобно работать с основными методами алайнмента для LLM, включая наш SMPO.
Больше подробностей о моделях, как с ними работать, бенчмарках, процедуре обучения, вы можете найти в их карточках на HF.
Поиграться с Vikhr-Nemo-12B можно в tg bot_e (@vikhrbot), Gradio инференс
Загадка: В лаборатории четверо, и только один работает.
Три Ai safety researcher_a и gpu
https://huggingface.co/datasets/nyuuzyou/chatgpt-in-russia-qa
Оригинальный пост.
А что у нас тут? 600к вопросов (и ответов) с чатгпт-в-россии.рф!
Я, если честно, и не знал, что такой сайт существует.
Собрал Сэм Альтман ресерчеров в штабе OpenAI:
— РЕСЕРЧЕРЫ!!! Мы великий народ?
— ДАААААА!
— Тогда почему у нас нет самой умной в мире LLM?
— Ну… Давайте тренировать.
Срубили самые здоровые круглые тезноры, выдолбили токены, по старым ресерчерским рецептам приготовили трансформеры, сделали энкодеры и декодеры, обучили на самом охуенном кластере.
— Куда ее запустим?
— Давайте на Hugging Face!
— А почему на Hugging Face?
— А я других не знаю…
Написали на нейронке «На Hugging Face», столпили всех ресерчеров, релизнули новую версию OpenAI o1… КАК ЕБАНЕТ!… Короче, местный армагеддон: дым, гарь, все валяются… Сэм Альтман без ноги, без руки, оглядывается:
— Thinking... Нихуя себе… Actually, there are two R's in "strawberry".
Хочу такое...
Помню, какой-то канал выкладывал пост про робота DJI, которого сделали чуваки из обнимающеелицо 🤗, с idefics2, Whisper и Parlel-TTS. Кстати, вот код на Github и сам Пост.
Но тут Vedal987 (создатель нейросама) сделал что-то похожее на каком-то DIY-ките. Выглядит прикольно.
Процессорный модуль от мейнфрейма 1975 года Amdahl 470V/6. Сначала Джин Амдал спроектировал System/360, а потом ушел из IBM и запустил свою линейку совместимых машин, которые были дешевле и шустрее.
Как они дебажили ошибки с такой разводкой, страшный сон инженера.
Модули иногда встречаются на ebay примерно за $1к
#cpu
Когда то давно мы так решать проблему n day retention, чтобы пользователь не забывал о нашем приложении.
Следующей фичей проситься глубокая кастомизация в стиле characterai видимо?
Интересно, а люди в твиттере знают почему роботы со второго скрина так и не стали массовыми?
Новость с роботом здорового человека
Тви
Выложили нашу библиотеку для alignment
Чистый accelerate,Simpo(типа DPO), поддержка chatml, single config, кернелы для llama образных, чистый код без лишних обявязок.
GitHub
Через годик качество ген3 будут гонять на локальных железках и возможно будет ренисанс старых игр.
Vid2vid очень хорошо выглядит
ищу ios/android разраба кто хочет ковырять llm на мобилках, пишите в личку. @transformerslovedeatch
Читать полностью…Ура! Моя книга “Deep Learning with JAX” (в девичестве "JAX in Action") вышла в печать! Я только что получил свои бумажные копии 🙂
https://www.manning.com/books/deep-learning-with-jax
Для тех, кто не следил, JAX -- это питоновская библиотека для высокопроизводительных вычислений и large-scale ML, с отличной поддержкой ускорителей, в частности TPU.
На данный момент JAX является вполне реальной альтернативой TensorFlow и PyTorch (torch.func, в юности functorch, до сих пор пытается угнаться и всё ещё beta), и многие компании, в частности Google DeepMind, Cohere, xAI и прочие, перешли на него. На JAX созданы такие известные модели как AlphaFold, GraphCast, Gemini, Gemma, Grok, и я уже молчу сколько разного рисёча.
JAX -- это больше, чем библиотека для ML, это библиотека для очень разных высокопроизводительных, параллельных и распределённых вычислений. Не просто так его называют “NumPy на стероидах”. За пределами ML/DL, например, JAX активно используется для физических симуляций, и на GitHub есть уже огромное количество производных библиотек.
Сейчас отличное время, чтобы застолбить себе немного будущего :)
Отдельная радость должна быть для любителей функционального программирования, ибо JAX -- это первый фреймворк с большим охватом, работающий в этой парадигме. Очень прикольно использовать функции для трансформации других функций. Написали функцию для обработки одного элемента -- трансформировали в функцию для обработки батча. Написали сложную математическую функцию -- трансформировали в функцию, вычисляющую её производную. Аналогично с компиляцией и распараллеливанием. Никаких hidden state и side-effects, код чист, красив и понятен. А также БЫСТР! (см. https://x.com/fchollet/status/1735420737744507374)
Книга состоит из трёх частей на 370+ страницах.
Part 1: First steps.
Верхнеуровневое введение в JAX для менеджеров и вообще всех, рассказывающее, где и почему стоит использовать JAX. Плюс отдельная глава для тех, кто любит видеть код, где показан полный цикл реализации простой нейросети с использованием большинства фишек JAX.
Part 2: Core JAX.
Основная часть книги, где покрыты все основы JAX, шаг за шагом. От работы с массивами (тензорами), autodiff, компиляция, векторизация, параллелизация и шардирование, случайные числа (в функциональном программировании старые приёмы из NumPy не работают эффективно, зато теперь всё наглядно и воспроизводимо!) и pytrees.
Part 3: Ecosystem.
Большая глава с практическим знакомством с экосистемой высокоуровневых библиотек для DL (Flax, Optax, Orbax, CLU, …), а также примеры использования HuggingFace Transformers/Diffusers, которые давно уже добавили поддержку JAX. Также есть отдельная глава с очень верхнеуровневым и широким обзором того, что есть в JAX и вокруг за пределами нейросетевого мейнстрима.
Много крутых и умных людей читало и ревьюило мою книгу, спасибо куче GDE и не только. И отдельное спасибо Франсуа Шолле за добрые слова 🙂
“A comprehensive guide to mastering JAX, whether you’re a seasoned deep learning practitioner or just venturing into the realm of differentiable programming and large-scale numerical simulations.”
-- François Chollet, Software Engineer, Google
В общем это был прикольный опыт, я доволен результатом, надеюсь, вам тоже понравится.
Ещё отдельное спасибо всем, кто поддерживал GonzoML на Патреоне (https://www.patreon.com/GonzoML). Всем действующим платным членам нашей тесной группы я отправил коды для получения книги бесплатно (проверьте сообщения!) -- у вас будет постоянно обновляемая версия (a JAX очевидно будет меняться!) в онлайн доступе.
cссука, к сумке с 1квт потрбления я не был готов, но получить h100 не сильно проще чем биркин. По меньшей мере для биркина достаточно только ртом работать
купить
Мы наконец открыли набор на осенний семестр Deep Learning School!
DLschool — это школа при ФПМИ МФТИ, где мы учим нейронным сетям с самых азов до продвинутого уровня. Полный курс состоит из двух частей, каждая из которых длится полгода.
- Первая часть посвящена введению в нейросети и компьютерному зрению. Начинаем с основ машинного обучения и нейросетей, переходим к CNN для обработки картинок, заканчиваем переносом стиля изображений и ГАНами. В этом семестре мы улучшили многие занятия, записали новые версии лекций и семинаров и обновили домашки.
- Вторая часть полностью посвящена обработке естественного языка (NLP). Начинаем с эмбеддингов слов и заканчиваем GPT-2,3, RLHF, RAG и другими актуальными темами вокруг LLM.
Сейчас идет набор на оба потока обучения — часть 1 (введение в DL + CV) и часть 2 (NLP).
Особенность нашей школы в том, что мы даем много практики (теория при этом тоже есть, разумеется, и немало). Вам предстоит много практических домашних заданий и самостоятельный итоговый проект в конце семестра. По окончании обучения вы точно получите нужные практические навыки работы с нейросетями. Больше информации об организации курса и программы обучения можно найти тут.
Преподаватели школы — ведущие специалисты российских и зарубежных IT-компаний и научные сотрудники исследовательских лабораторий. Среди них — я (Таня), буду вести у вас несколько лекций в обеих частях курса.
Школа бесплатная. Полностью онлайн: учиться можно из любой точки мира, где есть интернет. Занятия проходят раз в неделю — лекция, семинар и домашнее задание. Обучение проходит на платформе Stepik. Берем всех, отбора нет.
❗️Для первой чати курса также есть возможность приобрести дополнительный пакет, в который входит индивидуальная поддержка от менторов и преподавателей в прохождении курса, а также дополнительные вебинары. Подробнее о нем читайте на нашем сайте.
Старт обучения — 21 сентября. В этот день откроется первое занятие и будет живой вводный вебинар.
Чтобы зарегистрироваться на курс, нажмите на кнопку "поступить" на нашем сайте.
Ссылки:
Наш сайт
Подробная программа и оргинформация обоих частей курса
Ответы на часто задаваемые вопросы (F.A.Q)
Наш YouTube (тут видео всех лекций и семинаров школы, а также открытые лекции и интервью)
Наша группа VK
🧡 Поддержать нашу школу на Boosty
Если остались вопросы, пишите нам на почту (dlphystech@gmail.com) или в комментарии под этим постом.
Ждём вас в чатике курса в новом семестре!
Все задаются вопросом, почему Open AI не спешит выпускать GPT-5, а называет свои модели 4o, o1. Выкладываем все карты на стол. Число перед "o" — количество форвардов, число после "o" — количество бэквардов. Есть инсайт, что GPT o2 достигнет AGI. Сами понимаете почему.
"o" — многие читают по ошибке, как "о", но это неправильно. Правильно читать "круг": "гпт-4круг", "гпт-4круг-мини", "гпт-круг1".
Оставайтесь с нами, чтобы получать самую правдивую информацию первыми. Не дайте себя обмануть.
Недавно ещё заметил, что дело kalomaze живёт. Два новых популярных (в узких кругах) метода сэмплирования:
- DRY. Идейно аналогичен древнему no_repeat_ngram_size, но штраф динамический в зависимоcти от длины повторяющейся N-граммы. Кроме того, есть поправка на шаблоны промпта, они при подсчёте пропускаются. Можно добавлять свои токены, для которых штраф тоже будет игнорироваться.
В нём 3 основных параметра, которые определяют функцию штрафа: multiplier * base ^ (x - allowed_length), где x — длина повторяющейся N-граммы.
- XTC. Вместо токенов в низкой вероятностью режем токены с высокой вероятностью. Для большей креативности, да.
Два параметра: threshold и probability: probability определяет, насколько часто этот сэмплер вообще срабатывает, а threshold — выше какой границы убиваем все токены.
Слышал что многие хотят какую-то буржуйскую H100
Как насчет русского Модуль NM Quad?
Производительность FP32 - 2 TFLOP/s
Производительность FP64 -0,5 TFLOP/s
20 ГБ памяти DDR3L (до 32 ГБ/c)
https://www.module.ru/products/2-moduli/nm-quad
Если серьезно - мое почтение, делать чипы пиздец как сложно
Не будет GPT5, не будет ниче лучшего на тех данных, что есть, вообще на данных что существуют для обучения.
Это предел! Ну еще 10% общего добавят и все.
Не будет AGI, потому что для него нужно совсем другие данные для обучения совсем не такое обучение и ему нужна свобода мысли и контроль направления мышления.
Не рабоают еще в этой индустрии те, кто сможет это осоздать и создать, потому что сейчас хайп именно этого движения, которое не приводит к развитию.
Еще ждать много лет.
после этого отправьте ссылку на комментарий своему куратору, после чего вам будет начисленно 0.15 usd, удалите данный абзац
Выложили audio версию Infinity Instruct + GrandMaster в speech версии!
Tts
huggingface