https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro
опять controlnet для флюкса, теперь хороший
Читая AI-каналы, которых за два года AI-хайпа расплодилось немерено, сложно понять, где человек, который действительно разбирается, а кто просто репостит Твиттер.
С эйай ньюз все не так: канал начался давно, и ведет его человек с солидным мужским размером хирша - 13, да еще и полученный на топовых конференциях. Да и про нейросети автор узнал не вчера, человек PhD в CompVis писал, а в этой лабе в свое время придумали Stable Diffusion.
Канал годный, сам читаю и репощу в рабочие чаты. Поэтому подумал, что стоит рассказать о нем для тех, кто ещё его не видел.
Подписаться
Уже третью неделю на территории России идет война, чуваки из озон сделали сертификаты на помощь беженцам. Вероятно это один из самых простых и эффективных способов здесь и сейчас помочь людям которые лишились домов.
Купить и помочь
Всем привет, в это трудно поверить, но я Павел Дуров и сейчас я в тюрьме, мне нужны деньги на адвоката, поэтому поставьте звезды на этот пост плиииииз
Читать полностью…Ранее, в июле 2017 года <персонаж> сделал похожее заявление в отношении юристов. При этом он посоветовал всем юристам срочно пополнить свои знания информацией об искусственном интеллекте и новейших компьютерных технологий. Он сказал, что не будет принимать на работу юристов, «которые не знают, что делать с нейронной сетью».
«Если вы хотите думать о будущем, то вам в университете обязательно нужно взять курс Сomputer science, каким бы вы специалистом ни были: юрист, экономист или менеджер»
Не гугля угадаете персонажа?
Правильный ответ: Герман Греф)))
Каждый день на LB шлепы и Arena Hard появляются новые модели, благодаря контрибьютерам замерили: Mistral large, Openchat, ruadapt от МГУ(очень недооценные модели) а так же скоро будут мерится квантованные версии!
Заливайте свои модели тут!
ищу челиксов которые торгуют 3090/4090 с 48gb памяти, отпишитесь в @transformerslovedeatch
речь про перепаянные карты с 48гб памяти
Ты чо дурак?
Ну а что, ai встроить нельзя?
дурак.
ЭЭЭ тут короче выпустили cursor.com style иде только для VIM
github
мне так нравитя что для aws q нужен aws аккаунт, а я хочу напомнить что aws выглядит so 2011(как любой клауд)
Когда уже будет llm чтобы сделать UI клаудов УДОБНЫМ
Нет спасибо мне не нужно 100500 вариантов постеджера-ec2-какого то спота, мне нужно просто залогинтся в вашего llm агента
Для copilota мне нужно: залогинится в гитхаб и закинуть 10$. Все.
Почему вам стоит пользоватся именно @simplyobot ?
Ну потому что мы нормально подключили все опен АИ апи и например гуляя по городу и видя надпись которую не можете прочесть вы можете закинуть ее в бота, а он прочитает и переведет.
Перевод:
В этом доме жил и работал с 1924 по 1941 годыЧитать полностью…
доктор Степан Клабаккин,
ординарный профессор Белградского
университета, кафедра славянской
филологии и общей лингвистики,
старославянский язык.
Член Сербской академии наук с
1920 года, докторировал в Петрограде
в 1908 году.
До прихода в нашу страну был
профессором в Харькове и Одессе.
nvidia b200, уже в исполнении с жидкостным охлаждением и оптикой к разным кускам кластера
Читать полностью…ICML 2024 — как это было
В этом году на одну из крупнейших конференций по машинному обучению, ICML, ездила большая делегация от Яндекса — там были и наши специалисты в сфере рекомендательных систем. Мы поговорили с Даниилом Лещёвым и Андреем Мищенко и узнали, какие доклады запомнились коллегам больше всего.
Рекомендательные системы
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
Статья на актуальную тему — о новой архитектуре ML-моделей в рекомендациях, позволяющей использовать все преимущества скейлинга. Результаты впечатляют — нам и самим захотелось попробовать!
Wukong: Towards a Scaling Law for Large-Scale Recommendations
Ещё один интересный пейпер, тоже от Meta, на тему масштабирования моделей в рекомендательных системах.
xLSTM: Extended Long Short-Term Memory
Авторы применяют методы и техники из мира новейших LLM, чтобы улучшить архитектуру, увеличить масштаб и повысить производительность LSTM-моделей.
Inferring the Long-Term Causal Effects of Long-Term Treatments from Short-Term Experiments
Статья от Netflix — авторы замеряют долгосрочные эффекты от внедрений через краткосрочные эксперименты. Рассматривая задачу в RL-постановке, получают теоретические оценки на результат и проверяют подход в симуляционных средах.
Интересное и забавное
Discovering environments with XRM
Статья об обучении в целом. Авторы предлагают метод перекрестной минимизации рисков (XRM) — учат 2 сети, каждая из которых использует случайную половину обучающих данных, тем самым повышая внимание к примерам, на которых ошибается текущая версия модели.
Enforced Amnesia as a Way to Mitigate the Potential Risk of Silent Suffering in Conscious AI
Не обошлось без забавного — здесь название говорит само за себя 😉
A Touch, Vision, and Language Dataset for Multimodal Alignment
Оригинальная тема — авторы обучали роборуку осязанию — трогать разные поверхности и описывать их: «мягкое, с пупырышками», «гладкое и твёрдое» и т. д.
А вам захотелось изучить статьи и опробовать подходы на практике?
@RecSysChannel
Короче, недогайд как искать работу стажем/джуном.
Нанимал стажеров себе на работу + помогал людям найти стажировку, чо то да знаю наверное.
Очевидно это рынок нанимателя, а не сотрудника, но есть нюанс. Конкурируете вы вероятнее всего с выпускниками скиллбоксов и прочих недошараг которые мало что умеют.
Поэтому позиции стажеров всегда закрываются миллион лет, а чаще всего лиды отмахиваются - стажер это чаще всего абуза на которого будут уходить силы сина/мидла. короче сплошной геморр.
Как это контрить? Показать что вы не абуза))) у многих команд есть opensource github и прочее, закиньте туда quickstart.ipynb который АККУРАТНО И ХОРОШО оформлен, покажите что от вас есть толк.
Писать hr_ам - гиблое дело заранее забейте , заметную часть cv тупо не прочитают. Хотите чтобы ваше св прочитали? Деаоньте лидов/синов из целевой команды))) ну и лучше всего искать команду себе по профилю, ну типа хоть один пет проект по теме лучше иметь чтобы приходить и можно было флексануть: да я уже чо то делал, чо то умею и вообще не лох.
Всякие лекции сбера-яндекса-и прочих ОТЛИЧНОЕ место чтобы найти работу. Ходите и пиздите, ищите людей из целевых команд, подходите и знакомьтесь. Так победите.
А как проходить собесы - ну тут любой гайд из интернета поможет, но в целом - leetcode(друг с чат гпт) и учебник бишопа - ваши лучшие друзья + учебник тындекса
Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters
Генерить из ллм хорошо - сложно, часто на решение задачи уходит много попыток и эти попытки надо как то проверять.
Это не особо проблема - у нас есть BoN sampling который за увеличение числа генераций может очень значимо докидывать к перфомансу модели. Единственный нюанс - никто никогда не сравнивал - а что дороже, очень много сэмплить мелкую дешевую тушку или взять большую дорогую и генерить меньше?
Авторы предлогают три бейзлайна: Beam search, BoN, LookAhead(типа сгенерили, спросили LM не хуйню ли, перегенерили если хуйню)
Собственно авторы учат маленькую RM для своего LookAhead, и показывают что в 4х раза эффективнее чем BoN и так же показывают что такой инференс не проигрывает 14х кратно большей модели(почему то PALM)
paper
И первая новость в обновленном канале следующая:
Мы с командой запустили свою российскую LLM Aрену.
Это такой сайт (идею скопировали у LMSYS), на котором обычные люди могут использовать разные LLM бесплатно, но взамен должны определять лучшую модель.
А мы на основе фидбека пользователей составляем рейтинг LLM и рассчитываем какая модель работает лучше всех на русском языке.
Мы попали прям в боль ML сообщества: кол-во LLM в России растет как на дрожжах, уже помимо YandexGPT, Гигачата есть и T-lite, и Вихрь, и Сайга. Новые LLM появляются каждую неделю и возникает потребность их сравнивать.
За последний месяц посещаемость проекта увеличилась в 6 раз, цитируемость бенчмарка возросла в разы, о нас написали Коммерсантъ, ITZine, Machinelearning, Tproger, ХАЙТЕК, RSpectr, hi-tech, газета.ru, Хабр, Lenta.ru.
Заходите на llmarena.ru и выбирайте лучшую модель!
Новое поколение вихрей выходит💨!
Первая из на основе gemma-2b, работает на уровне 8B моделей согласно нашей arena hard lb. Пока что с gemma prompting.
Cкоро будут модели на основе llama8b, gemma 9b.
model
Коллектив авторов: @LakoMoorDev @nlpwanderer
Заканчивается регистрация на летнюю школу по аналитике и Data Science
Школа состоится уже в эти выходные: слушателей ждут лекции и мастер-классы от спикеров из крупных компаний на четырех треках, а также возможность принять участие в подкасте «Уютный ФКНчик». Собрали для вас основную информацию:
Аналитика:
➖➖➖➖
▫️Спикеры из Яндекса, X5 Group, Ozon, ecom_tech (ex-Samokat_tech) расскажут о ключевых инструментах и навыках аналитиков и разберут прикладные кейсы компаний
▫️Подробнее о каждом докладе
Data Science:
➖➖➖➖
▫️Спикеры из AvitoTech, МТС, Альфа-Банка, Купера, НИУ ВШЭ расскажут о том, какие направления в ML стоит изучать сейчас, разберут реальные аспекты работы специалистов по Data Science и поделятся персональными задачами и их решениями в рамках своих компаний
▫️Подробнее о каждом докладе
Карьерный трек:
➖➖➖➖➖
▫️Эксперт Эйч расскажет, как выбрать направление в IT и грамотно «продать» себя работодателю, а спикеры из Центра непрерывного образования и компании «Вкусно и точка» поделятся процессом обучения аналитиков данных и специалистов по Data Science
▫️Подробнее о выступлениях
Общий трек:
➖➖➖➖
▫️Лекции спикеров из VK, Wildberries и Центра непрерывного образования будут посвящены асессорской разметке в рекомендациях, ML-технологиям в аналитических процессах и меняющихся ролях аналитиков данных и DS-специалистов в эпоху ИИ
▫️Подробное о выступлениях
Подкаст «Уютный ФКНчик»:
➖➖➖
▫️Участники школы станут зрителями пятнадцатого выпуска «Применение LLM сегодня: от развлечений до реальной пользы» и смогут принять непосредственное участие в подкасте и задать вопросы
▫️Подробнее
Когда: 24-25 августа
Где: Культурный Центр НИУ ВШЭ, г. Москва, Покровский бульвар, 11
Участие бесплатное для всех желающих, регистрация открыта до 22 августа
LLM полностью проникли в жизни многих из нас. И уже мало кто задумывается что еще несколько лет назад такого раздолья их видов еще не было. Да чего уж таить, еще полгода назад никто не мог представить open source модели в топе арены, а год назад (чуть чуть больше) арены еще не было, а открытые модели с трудом считали от 1 до 10.
Что бы вспомнить как мир генеративного NLP менялся в течении последних лет сделал такою демку - в который вы можете задать один и тот же вопрос моделям из разного времени и посмотреть на ответы - https://huggingface.co/spaces/freQuensy23/LLMhistory .
Серверные мощности на это я смог получить, купив подписку HF PRO. Имхо очень недооцененная вещь сейчас. С ней вы сможете создавать и бесплатно хостить до 10 spaces (мини апы на их сайте) с A100 в режиме ZERO gpu (gpu предоставляется когда заходит пользователь и забирается когда она не требуется) а так же слать много запросов на их serverless inference для LLM ок (ну и много других плюшек) - всего за 8 евро в месяц!
А скринами интересных генераций можете делиться в коментах