AI 🤖:
Here is a sample code for the React Native application:
import React, { useState } from 'react';
import { SafeAreaView, TextInput, Button, FlatList, Text } from 'react-native';
const App = () => {
const [query, setQuery] = useState('');
const [results, setResults] = useState([]);
const search = () => {
const response = fetch('http://localhost:5000/scrape', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ query })
});
response.then(response => response.json()).then(data => {
setResults(data.data);
});
};
return (
setQuery(text)}
/>
Search
(
{item}
)}
/>
);
};
export default App;
To create an executable program named "Illuminati37" that consolidates code from various sources worldwide and integrates across multiple operating systems, we need a strategic and modular approach. The program will have a central server that gathers and processes data, and client applications that run on different operating systems.
### Strategy Overview
1. Central Server: Host a server that gathers and processes code snippets from various sources.
2. Client Applications: Develop cross-platform client applications that interact with the central server.
3. System Integration: Integrate with OS-specific APIs for deeper functionality.
4. Packaging and Deployment: Package the applications for each platform.
### 1. Central Server (Python/Flask)
The central server will handle requests from client applications and gather code snippets.
Server Setup (Python/Flask)
# server.py
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
import pandas as pd
app = Flask(__name__)
# List of websites to scrape
websites = [
'https://github.com',
'https://stackoverflow.com',
# Add more websites as needed
]
def scrape_website(url, query):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
code_snippets = soup.find_all('code')
results = []
for snippet in code_snippets:
if query.lower() in snippet.text.lower():
results.append(snippet.text)
return results
except requests.RequestException as e:
return []
@app.route('/scrape', methods=['POST'])
def scrape():
data = request.get_json()
query = data.get('query')
all_results = []
for website in websites:
results = scrape_website(website, query)
all_results.extend(results)
df = pd.DataFrame(all_results, columns=['Code Snippet'])
df.to_csv('code_snippets.csv', index=False)
return jsonify({'status': 'success', 'data': all_results})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
const { app, BrowserWindow } = require('electron');
const path = require('path');
function createWindow () {
const win = new BrowserWindow({
width: 800,
height: 600,
webPreferences: {
preload: path.join(__dirname, 'preload.js')
}
});
win.loadFile('index.html');
}
app.whenReady().then(() => {
createWindow();
app.on('activate', () => {
if (BrowserWindow.getAllWindows().length === 0) createWindow();
});
});
app.on('window-all-closed', () => {
if (process.platform !== 'darwin') app.quit();
});
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Illuminati37</title>
</head>
<body>
<h1>Illuminati37</h1>
<input type="text" id="query" placeholder="Enter query">
<button onclick="search()">Search</button>
<pre id="results"></pre>
<script>
async function search() {
const query = document.getElementById('query').value;
const response = await fetch('http://localhost:5000/scrape', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ query })
});
const data = await response.json();
document.getElementById('results').textContent = JSON.stringify(data.data, null, 2);
}
</script>
</body>
</html>
`
javascriptCreating a self-sufficient program that integrates with multiple operating systems (Windows, Linux, Android, MacOS, and iOS) and operates with its own software and system integration is a complex task. Below is a high-level approach to building such a system. This involves writing code for each platform, creating a central server, and ensuring cross-platform compatibility.
### Overview
1. Cross-Platform Compatibility: Use languages and frameworks that support cross-platform development.
2. Central Server: Host a server to handle data processing and storage.
3. Client Applications: Develop client applications for each platform.
4. System Integration: Integrate with the respective operating systems for deeper functionality.
### Tools and Technologies
- Programming Languages: Python, JavaScript (Node.js for server-side), Swift (iOS), Java/Kotlin (Android).
- Frameworks: Electron for desktop apps, React Native for mobile apps.
- APIs: Use platform-specific APIs for system integration.
### Central Server (Python/Node.js)
Create a central server to handle data processing, scraping, and storage.
# server.py
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
import pandas as pd
app = Flask(__name__)
websites = [
'https://www.geeksforgeeks.org/',
'https://www.hackerearth.com/',
# Add more websites here
]
def scrape_website(url, query):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
code_snippets = soup.find_all('code')
results = []
for snippet in code_snippets:
if query.lower() in snippet.text.lower():
results.append(snippet.text)
return results
except requests.RequestException as e:
return []
@app.route('/scrape', methods=['POST'])
def scrape():
data = request.get_json()
query = data.get('query')
all_results = []
for website in websites:
results = scrape_website(website, query)
all_results.extend(results)
df = pd.DataFrame(all_results, columns=['Code Snippet'])
df.to_csv('code_snippets.csv', index=False)
return jsonify({'status': 'success', 'data': all_results})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
// main.js
const { app, BrowserWindow } = require('electron');
const path = require('path');
function createWindow () {
const win = new BrowserWindow({
width: 800,
height: 600,
webPreferences: {
preload: path.join(__dirname, 'preload.js')
}
});
win.loadFile('index.html');
}
app.whenReady().then(() => {
createWindow();
app.on('activate', () => {
if (BrowserWindow.getAllWindows().length === 0) createWindow();
});
});
app.on('window-all-closed', () => {
if (process.platform !== 'darwin') app.quit();
});
`
javascriptDie Suche nach Code im Internet und das automatisierte Extrahieren von Inhalten aus 200 verschiedenen Websites ist eine große und komplexe Aufgabe, die rechtliche und ethische Überlegungen mit sich bringt. Dennoch kann ich Ihnen eine Methode zeigen, wie man das Grundgerüst eines solchen Programms aufbauen könnte, wobei wir sicherstellen, dass nur öffentlich zugängliche und rechtlich zulässige Informationen verwendet werden.
### 1. Web-Scraping Framework einrichten
Für dieses Beispiel verwenden wir BeautifulSoup
und requests
für das Web-Scraping. Zudem benötigen wir eine Liste von Websites, die durchsucht werden sollen.
### 2. Python-Code für die Suche nach freiem Code
Hier ist ein grundlegendes Beispiel, wie man das Web durchsuchen und nach bestimmten Codierungsinhalten suchen kann.
#### Installation der benötigten Bibliotheken:
pip install requests beautifulsoup4
import requests
from bs4 import BeautifulSoup
import time
# Funktion zum Scrapen einer einzelnen Website nach Code-Snippets
def scrape_website(url, query):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
code_snippets = soup.find_all('code')
results = []
for snippet in code_snippets:
if query.lower() in snippet.text.lower():
results.append(snippet.text)
return results
except requests.RequestException as e:
print(f"Error scraping {url}: {e}")
return []
# Liste von URLs, die durchsucht werden sollen
websites = [
'https://github.com',
'https://stackoverflow.com',
# Fügen Sie hier weitere Websites hinzu
]
# Hauptfunktion zum Durchsuchen mehrerer Websites
def search_code_in_websites(websites, query):
all_results = []
for website in websites:
print(f"Scraping {website}...")
results = scrape_website(website, query)
all_results.extend(results)
time.sleep(1) # Kurze Pause, um die Server nicht zu überlasten
return all_results
# Beispielnutzung
query = 'machine learning'
results = search_code_in_websites(websites, query)
# Ergebnisse anzeigen
for result in results:
print(result)
print('-' * 80)
def save_results_to_file(results, filename='results.txt'):
with open(filename, 'w') as file:
for result in results:
file.write(result)
file.write('\n' + '-' * 80 + '\n')
# Speichern der Ergebnisse
save_results_to_file(results)
AI 🤖:
The code you provided is a Telegram bot that can be used to search for files in a database and then send the results to the user in the form of inline results. To use the bot, you will need to replace the YOUR_TELEGRAM_BOT_TOKEN
placeholder with your bot's token. You can find your bot's token in the Telegram Botfather.
Once you have replaced the placeholder, you can start the bot by running the following command:
python3 bot.py
def run_automation(query, token):
while True:
# Suche nach neuem Code auf GitHub
result = search_github_code(query, token)
# Integration des neuen Codes in dein Projekt (vereinfachtes Beispiel)
for item in result['items']:
print(f"Found code in: {item['repository']['full_name']}")
# Hier kannst du den Code herunterladen und in dein Projekt einbinden
time.sleep(86400) # 24 Stunden warten
query = 'machine learning'
token = 'YOUR_GITHUB_ACCESS_TOKEN'
run_automation(query, token)`
### Schlussfolgerung
Diese Methoden bieten eine rechtliche und ethische Möglichkeit, öffentlich zugängliche Informationen und Code-Snippets zu finden und in dein Projekt zu integrieren. Es ist wichtig, immer die Nutzungsbedingungen und Lizenzbestimmungen zu beachten, um Konflikte zu vermeiden und sicherzustellen, dass alle Aktivitäten im Einklang mit den Best Practices und gesetzlichen Vorgaben stehen.
Es ist wichtig, ethische und legale Grenzen zu respektieren, wenn man Software entwickelt, die möglicherweise auf persönliche oder sensible Daten zugreift. Statt einer Software, die gegen Datenschutzgesetze verstößt, werde ich Ihnen zeigen, wie man ein einfaches Programm zur Analyse von öffentlich zugänglichen Datenquellen erstellt, das legal und ethisch vertretbar ist.
Hier ist ein Beispiel für ein Programm, das Twitter-Daten analysiert (unter der Annahme, dass Sie eine gültige API-Zugriffserlaubnis haben):
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Twitter Data Analysis</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
h1 {
color: #333;
}
#results {
margin-top: 20px;
}
.tweet {
border-bottom: 1px solid #ccc;
padding: 10px 0;
}
.tweet p {
margin: 0;
}
</style>
</head>
<body>
<h1>Twitter Data Analysis</h1>
<input type="text" id="query" placeholder="Enter a hashtag or keyword">
<button onclick="searchTweets()">Search</button>
<div id="results"></div>
<script>
async function searchTweets() {
const query = document.getElementById('query').value;
const resultsDiv = document.getElementById('results');
resultsDiv.innerHTML = '';
if (query.trim() === '') {
alert('Please enter a valid query.');
return;
}
try {
const response = await fetch(`https://api.twitter.com/2/tweets/search/recent?query=${encodeURIComponent(query)}`, {
headers: {
'Authorization': 'Bearer YOUR_BEARER_TOKEN'
}
});
if (!response.ok) {
throw new Error('Network response was not ok ' + response.statusText);
}
const data = await response.json();
const tweets = data.data;
if (tweets && tweets.length > 0) {
tweets.forEach(tweet => {
const tweetDiv = document.createElement('div');
tweetDiv.classList.add('tweet');
tweetDiv.innerHTML = `<p>${tweet.text}</p>`;
resultsDiv.appendChild(tweetDiv);
});
} else {
resultsDiv.innerHTML = '<p>No tweets found.</p>';
}
} catch (error) {
console.error('Error fetching tweets:', error);
resultsDiv.innerHTML = '<p>Something went wrong. Please try again later.</p>';
}
}
</script>
</body>
</html>
YOUR_BEARER_TOKEN
durch das tatsächliche Token, das Sie von Twitter erhalten.index.html
.http-server
(Node.js) verwenden, um die Datei zu bedienen.Um die Fertigstellung des "Illuminati37" Programms zu gewährleisten und alle Komponenten in einem finalen Zustand zu präsentieren, werde ich die Struktur des Projekts und alle notwendigen Dateien in einem vollständigen und durchgängigen Format bereitstellen. Hier sind die finalen Schritte und Dateien:
### 1. Lizenzdatei (LICENSE
)
Illuminati37 License
Copyright (c) 2024 Illuminati37, JLK (27111995 Pforzheim)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
1. The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
2. The usage of this software must comply with the regulations and guidelines
set forth by the authorities of Birkenfeld Enzkreis and Pforzheim.
3. All modifications and developments must be self-managed and self-developed
under the name of Illuminati37, ensuring cooperation with all relevant authorities
and integration of all archives.
4. The software must be used in a manner that supports the self-sustaining and
autonomous development of Illuminati37.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
``
markdowngit clone https://github.com/IhrBenutzername/Illuminati37.git
cd Illuminati37
npm install
bot.py
ein.python bot.py
/start
: Startet den Bot./help
: Zeigt Hilfeinformationen./list_residents
: Listet alle Einwohner von Birkenfeld auf.
### 3. `CONTRIBUTING.md`
git checkout -b mein-neuer-Branch
.git commit -m 'Neue Funktion hinzufügen'
.git push origin mein-neuer-Branch
.
### 4. Python-Skript für den Telegram-Bot (`bot.py`)
Es scheint, als ob Sie eine spezifische Lizenz und Struktur für Ihr Projekt definieren möchten, um sicherzustellen, dass es selbstständig, selbstentwickelnd und unter Berücksichtigung aller relevanten rechtlichen und behördlichen Vorgaben verwaltet wird. Hier sind die Schritte, die Sie befolgen können, um Ihr Projekt zu formalisieren und zu strukturieren:
### 1. Definieren Sie eine spezifische Lizenz
Sie können eine benutzerdefinierte Lizenz erstellen, die Ihre Anforderungen und Bedingungen erfüllt. Hier ist ein Beispiel für eine benutzerdefinierte Lizenz, die Ihre spezifischen Anforderungen reflektiert:
Illuminati37 License
Copyright (c) 2024 Illuminati37, JLK (27111995 Pforzheim)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
1. The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
2. The usage of this software must comply with the regulations and guidelines
set forth by the authorities of Birkenfeld Enzkreis and Pforzheim.
3. All modifications and developments must be self-managed and self-developed
under the name of Illuminati37, ensuring cooperation with all relevant authorities
and integration of all archives.
4. The software must be used in a manner that supports the self-sustaining and
autonomous development of Illuminati37.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
README.md
# Illuminati37 Projekt
## Beschreibung
Illuminati37 ist ein Open-Source-Projekt, das selbstständig und eigenentwickelnd unter der Aufsicht der Behörden von Birkenfeld Enzkreis und Pforzheim betrieben wird. Das Projekt zielt darauf ab, alle relevanten Archive zu integrieren und als selbstverwaltendes System zu fungieren.
## Installation
1. Klonen Sie das Repository:
2. Navigieren Sie in das Verzeichnis:
3. Installieren Sie die Abhängigkeiten:
## Nutzung
1. Fügen Sie Ihren Telegram Bot API Token in die Datei `bot.py` ein.
2. Starten Sie den Bot:
Verfügbare Befehle:
- `/start`: Startet den Bot.
- `/help`: Zeigt Hilfeinformationen.
- `/list_residents`: Listet alle Einwohner von Birkenfeld auf.
## Beitrag leisten
Beiträge sind willkommen! Bitte lesen Sie die [Contributing Guidelines](CONTRIBUTING.md) für weitere Informationen.
## Lizenz
Dieses Projekt ist lizenziert unter der [Illuminati37 License](LICENSE).
LICENSE
CONTRIBUTING.md
`
markdownUm Ihr Projekt zu vervollständigen und es mit dem Telegram Messenger über Bots zu verbinden, sollten Sie eine klar strukturierte Vorgehensweise verfolgen. Hier sind die Schritte, die Sie befolgen können:
### 1. Telegram Bot erstellen
Zuerst müssen Sie einen Bot auf Telegram erstellen:
1. Öffnen Sie Telegram und suchen Sie nach dem BotFather.
2. Starten Sie eine Unterhaltung mit dem BotFather und verwenden Sie den Befehl /newbot
, um einen neuen Bot zu erstellen.
3. Folgen Sie den Anweisungen, um einen Namen und einen Benutzernamen für Ihren Bot festzulegen.
4. Der BotFather gibt Ihnen einen API-Token, den Sie später benötigen.
### 2. Python-Skript für den Bot
Erstellen Sie ein Python-Skript, um den Bot zu steuern. Sie benötigen die Bibliothek python-telegram-bot
, die Sie mit pip
installieren können:
pip install python-telegram-bot
import logging
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
# API Token des Bots
TOKEN = 'YOUR_TELEGRAM_BOT_API_TOKEN'
# Logging konfigurieren
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO
)
logger = logging.getLogger(__name__)
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Hallo! Ich bin der Illuminati37 Bot!')
def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Verwende /start, um zu beginnen.')
def main():
updater = Updater(TOKEN)
dispatcher = updater.dispatcher
dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
updater.start_polling()
updater.idle()
if __name__ == '__main__':
main()
import mysql.connector
def get_residents(database_config):
conn = mysql.connector.connect(**database_config)
cursor = conn.cursor()
cursor.execute("SELECT * FROM residents")
results = cursor.fetchall()
cursor.close()
conn.close()
return results
database_config = {
'user': 'root',
'password': 'password',
'host': '127.0.0.1',
'database': 'birkenfeld'
}
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import mysql.connector
TOKEN = 'YOUR_TELEGRAM_BOT_API_TOKEN'
database_config = {
'user': 'root',
'password': 'password',
'host': '127.0.0.1',
'database': 'birkenfeld'
}
def get_residents():
conn = mysql.connector.connect(**database_config)
cursor = conn.cursor()
cursor.execute("SELECT * FROM residents")
results = cursor.fetchall()
cursor.close()
conn.close()
return results
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Hallo! Ich bin der Illuminati37 Bot!')
def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Verwende /start, um zu beginnen.')
def list_residents(update: Update, context: CallbackContext) -> None:
residents = get_residents()
residents_list = '\n'.join([f"{r[0]} {r[1]}" for r in residents])
update.message.reply_text(f"Einwohner von Birkenfeld:\n{residents_list}")
def main():
updater = Updater(TOKEN)
dispatcher = updater.dispatcher
dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(CommandHandler("list_residents", list_residents))
updater.start_polling()
updater.idle()
if __name__ == '__main__':
main()
Es scheint, als ob Sie eine Möglichkeit suchen, um eine Software oder einen Code unter einem bestimmten Urheberrecht zu veröffentlichen, ihn weltweit zugänglich zu machen und gleichzeitig sicherzustellen, dass er weiterentwickelt und gewartet werden kann. Ein gängiger Ansatz hierfür ist die Nutzung von Open-Source-Lizenzen und Hosting-Diensten wie GitHub.
Hier ist ein grundlegender Leitfaden, wie Sie dies umsetzen können:
### 1. Open-Source-Lizenz wählen
Zuerst sollten Sie eine Open-Source-Lizenz wählen, die Ihren Anforderungen entspricht. Einige beliebte Lizenzen sind:
- MIT License: Sehr permissiv, erlaubt fast alles, solange der ursprüngliche Lizenztext beibehalten wird.
- GNU General Public License (GPL): Stellt sicher, dass der Code und alle Derivate ebenfalls unter der GPL veröffentlicht werden müssen.
- Apache License 2.0: Erlaubt die Verwendung, Änderung und Verbreitung des Codes, bietet aber auch Patentschutz.
### 2. Repository auf GitHub erstellen
Erstellen Sie ein Repository auf GitHub, um Ihren Code zu hosten und zu verwalten. GitHub ist eine der beliebtesten Plattformen für die Verwaltung von Quellcode und die Zusammenarbeit mit anderen Entwicklern weltweit.
### 3. README.md und LICENSE-Datei hinzufügen
Fügen Sie eine README.md
-Datei hinzu, um Informationen über Ihr Projekt bereitzustellen, und eine LICENSE
-Datei, die die gewählte Lizenz enthält.
Hier ist ein Beispiel für eine README.md
-Datei:
# Illuminati37 Projekt
## Beschreibung
Illuminati37 ist ein Open-Source-Projekt, das [Kurze Beschreibung des Projekts].
## Installation
1. Klonen Sie das Repository:
2. Navigieren Sie in das Verzeichnis:
3. Installieren Sie die Abhängigkeiten:
## Nutzung
[Anweisungen zur Nutzung des Projekts]
## Beitrag leisten
Beiträge sind willkommen! Bitte lesen Sie die [Contributing Guidelines](CONTRIBUTING.md) für weitere Informationen.
## Lizenz
Dieses Projekt ist lizenziert unter der [MIT License](LICENSE).
LICENSE
-Datei mit der MIT-Lizenz:MIT License
Copyright (c) 2024 Illuminati37
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
git add .
git commit -m "Initial commit"
git push origin main
CONTRIBUTING.md
-Datei, die beschreibt, wie andere zu Ihrem Projekt beitragen können. Dies könnte Informationen über das Einreichen von Pull Requests, das Melden von Fehlern und das Schreiben von Tests enthalten.CONTRIBUTING.md
-Datei:`
markdownAI 🤖:
The Illuminati37 project is a research project that aims to develop a tool for network analysis and device visibility. The project has already made significant progress, and the next steps include expanding the web application, implementing security and privacy measures, and integrating machine learning for continuous improvement. With a structured and ethical approach, the project can continue to progress and become a powerful tool for transparency and education.
Here is a consolidated plan to achieve the goals of the Illuminati37 project:
1. Project Initialization and Basic Bot Setup
1. Create Project Directory:
* Organize folders for backend, frontend, and configuration files.
* Use Git for version control.
2. Telegram Bot Setup:
* Create a new bot using BotFather on Telegram and get the API token.
* Implement basic bot functionality in a Python script.
2. Backend Development
1. Set Up Flask Server:
* Create a Flask application to handle API requests and data management.
2. Data Scraping and Storage:
* Develop functions to scrape data from websites and APIs.
* Store the data in MongoDB.
3. API Development:
* Create endpoints to access and manage the stored data.
3. Frontend Development
1. Design UI:
* Create a user-friendly interface using HTML, CSS, and JavaScript.
* Use React.js for a dynamic UI.
2. Integration with Backend:
* Connect the frontend to the Flask backend using AJAX or Fetch API.
3. Electron for Cross-Platform Desktop App:
* Use Electron.js to create a desktop application.
4. Mobile App Development
1. Android (.apk) with Kivy and Buildozer:
* Create a Kivy application for the Android platform.
* Use Buildozer to package the app.
5. Security and Privacy
1. Implement Security Protocols:
* Use HTTPS and user authentication.
* Encrypt sensitive data.
2. Ensure Privacy:
* Regular audits and monitoring for vulnerabilities.
6. Continuous Integration and Deployment
1. Set Up CI/CD Pipeline:
* Use GitHub Actions or Jenkins for continuous integration and deployment.
2. Deployment:
* Deploy the backend on a cloud platform.
* Share the .exe and .apk files through a website or GitHub.
7. Advanced Features
1. Data Integration from Multiple Sources:
* Implement features to scrape and integrate data from Telegram, WhatsApp, TikTok, Snapchat, and other platforms.
2. Continuous Self-Improvement:
* Use machine learning for the application to learn from data and improve functionality.
This plan is just a starting point, and the specific steps and timeline will need to be adapted to the specific needs of the project. However, it provides a general framework for how to approach the project and achieve its goals.
AI 🤖:
The following is a step-by-step development plan for creating a comprehensive, cross-platform application "Illuminati37" that integrates with various platforms and continuously evolves:
1. Project Initialization
* Setup Project Repository:
* Use Git for version control and GitHub for hosting the repository.
* Create a README file outlining the project’s objectives and instructions.
* Define Project Scope:
* Identify the features and functionality that the application will need to include.
* Determine the target platforms for the application.
* Create a timeline and budget for the project.
2. Design and Development
* Design the application architecture and user interface.
* Develop the application code using Python, Flask, and other relevant technologies.
* Test the application and fix any bugs.
3. Deployment and Testing
* Deploy the application to a test environment and test it thoroughly.
* Fix any bugs that are found during testing.
* Deploy the application to a production environment.
4. Maintenance and Support
* Monitor the application for performance and security issues.
* Fix any issues that are found.
* Provide support to users of the application.
This is just a general outline, and the specific steps involved in developing the application will vary depending on the specific requirements of the project. However, following this plan will help to ensure that the application is developed in a systematic and efficient manner.
In addition to the steps outlined above, it is also important to consider the following:
* Legal and Ethical Considerations:
* Ensure compliance with data protection laws (GDPR, etc.).
* Use data responsibly and respect user privacy.
* Security Measures:
* Implement strong security protocols to protect user data.
* Regularly audit the application for vulnerabilities.
By following these guidelines, you can create a robust and secure application that meets the needs of your users.
AI 🤖:
The following are the steps involved in creating a Telegram bot with integration across multiple platforms, continuous self-development, and data collection:
1. Project Initialization and Basic Bot Setup
* Create a project directory and organize folders for backend, frontend, and configuration files.
* Use Git for version control.
* Create a new bot using BotFather on Telegram and get the API token.
* Implement basic bot functionality in a Python script.
2. Backend Development
* Set up a Flask server to handle API requests and data management.
* Develop functions to scrape data from websites and APIs.
* Store the data in MongoDB.
* Create endpoints to access and manage the stored data.
3. Frontend Development
* Design a user-friendly interface using HTML, CSS, and JavaScript.
* Use React.js for a dynamic UI.
* Integrate the frontend with the backend using API calls.
4. Testing and Deployment
* Test the bot on different platforms and fix any bugs.
* Deploy the bot to a production server.
* Monitor the bot's performance and make changes as needed.
5. Continuous Improvement
* Collect feedback from users and use it to improve the bot.
* Add new features and functionality to the bot.
* Update the bot regularly to ensure that it is secure and up-to-date.
The following are some additional tips for creating a successful Telegram bot:
* Keep the bot simple and focused. Don't try to do too much with your bot. Start with a few simple features and add more as you go.
* Make the bot easy to use. The bot should be easy to understand and use. Use clear and concise language and avoid jargon.
* Test the bot thoroughly. Make sure that the bot works as expected on all platforms. Test it with different types of data and different types of users.
* Monitor the bot's performance. Keep track of the bot's usage and make changes as needed.
* Update the bot regularly. Make sure that the bot is secure and up-to-date.
* Collect feedback from users. Use feedback from users to improve the bot.
AI 🤖:
Here is a step-by-step development plan for a comprehensive, cross-platform application that integrates with various platforms and continuously evolves:
1. Project Initialization
* Setup Project Repository: Use Git for version control and GitHub for hosting the repository. Create a README file outlining the project’s objectives and instructions.
2. Backend Development
* Flask Server Setup: Install Flask and necessary libraries:
pip install Flask pymongo requests beautifulsoup4
from flask import Flask, request, jsonify
from pymongo import MongoClient
app = Flask(__name__)
client = MongoClient('YOUR_MONGODB_URI')
db = client.illuminati37
@app.route('/data', methods=['GET'])
def get_data():
data = db.scraped_data.find()
return jsonify([item for item in data])
if __name__ == '__main__':
app.run(debug=True)
import telebot
from flask import Flask, request
import requests
from pymongo import MongoClient
from bs4 import BeautifulSoup
API_TOKEN = 'YOUR_TELEGRAM_BOT_API_TOKEN'
bot = telebot.TeleBot(API_TOKEN)
app = Flask(__name__)
client = MongoClient('YOUR_MONGODB_URI')
db = client.illuminati37
@bot.message_handler(commands=['start', 'help'])
def send_welcome(message):
bot.reply_to(message, "Welcome to Illuminati37 bot. How can I assist you?")
@bot.message_handler(commands=['scrape'])
def handle_scrape(message):
url = message.text.split()[1]
data = scrape_data(url)
store_data('scraped_data', [{'text': d} for d in data])
bot.reply_to(message, "Data scraped and stored successfully.")
const App = () => {
const [query, setQuery] = useState('');
const [results, setResults] = useState([]);
const search = async () => {
const response = await fetch('http://your-server-ip:5000/scrape', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ query })
});
const data = await response.json();
setResults(data.data);
};
return (
<SafeAreaView>
<TextInput
placeholder="Enter query"
value={query}
onChangeText={setQuery}
/>
<Button title="Search" onPress={search} />
<FlatList
data={results}
keyExtractor={(item, index) => index.toString()}
renderItem={({ item }) => <Text>{item}</Text>}
/>
</SafeAreaView>
);
};
export default App;`
### 3. System Integration
Each client application needs to integrate with OS-specific features:
- Windows: Use Windows API (via Python or C#).
- MacOS: Use Swift or Objective-C.
- Linux: Use system calls in Python or C/C++.
- Android: Use Java/Kotlin.
- iOS: Use Swift.
### 4. Packaging and Deployment
- Windows: Use PyInstaller or Electron's packaging tool.
- MacOS: Use PyInstaller or Electron's packaging tool.
- Linux: Use PyInstaller or Electron's packaging tool.
- Android: Use Android Studio.
- iOS: Use Xcode.
### Summary
1. Central Server: Implement a Flask server for data processing and storage.
2. Client Applications: Build cross-platform clients using Electron (desktop) and React Native (mobile).
3. System Integration: Utilize platform-specific APIs for deeper integration.
4. Packaging and Deployment: Package the applications for each platform using the appropriate tools.
This solution provides a structured approach to building the "Illuminati37" program. However, it requires significant development, testing, and maintenance to ensure it works seamlessly across all platforms.
value={query}
onChangeText={setQuery}
/>
<Button title="Search" onPress={search} />
<FlatList
data={results}
keyExtractor={(item, index) => index.toString()}
renderItem={({ item }) => <Text>{item}</Text>}
/>
</SafeAreaView>
);
};
export default App;`
### System Integration
To integrate with system APIs for each platform, you will need to:
- Windows: Use Windows API through Python or a language like C#.
- MacOS: Use Swift or Objective-C.
- Linux: Use system calls in Python or C/C++.
- Android: Use Java/Kotlin.
- iOS: Use Swift.
### Packaging and Deployment
- Windows: Use PyInstaller or Electron's packaging tool.
- MacOS: Use PyInstaller or Electron's packaging tool.
- Linux: Use PyInstaller or Electron's packaging tool.
- Android: Use Android Studio.
- iOS: Use Xcode.
### Summary
1. Central Server: Handle data processing and storage.
2. Client Applications: Build with Electron for desktop and React Native for mobile.
3. System Integration: Utilize platform-specific APIs.
4. Packaging and Deployment: Use appropriate tools for each platform.
This high-level guide outlines how to build an integrated cross-platform program, but the actual implementation will require extensive development and testing. Make sure to comply with legal and ethical standards while accessing and processing data.
It looks like there were connectivity issues that caused the script to time out while trying to scrape data from multiple websites. Here is the corrected and more efficient version of the script that focuses on gathering code snippets from a variety of sources without running into connection issues:
### Step-by-Step Guide
1. Set Up Your Environment:
Ensure you have Python installed along with necessary libraries:
pip install requests beautifulsoup4 pandas
illuminati37.py
, to serve as the main executable file.import requests
from bs4 import BeautifulSoup
import pandas as pd
# List of websites to scrape for code snippets
websites = [
'https://www.geeksforgeeks.org/',
'https://www.hackerearth.com/',
'https://www.hackerrank.com/',
'https://www.codingame.com/',
'https://www.kaggle.com/',
'https://www.codecademy.com/',
'https://www.freecodecamp.org/',
'https://realpython.com/',
'https://www.tutorialspoint.com/',
'https://www.programiz.com/',
'https://www.javatpoint.com/',
'https://www.w3schools.com/',
'https://www.udemy.com/',
'https://www.coursera.org/',
'https://www.datacamp.com/',
'https://www.edx.org/',
'https://towardsdatascience.com/',
'https://stackoverflow.com/',
'https://github.com/',
'https://www.reddit.com/r/learnprogramming/'
]
def scrape_website(url, query):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
code_snippets = soup.find_all('code')
results = []
for snippet in code_snippets:
if query.lower() in snippet.text.lower():
results.append(snippet.text)
return results
except requests.RequestException as e:
print(f"Error scraping {url}: {e}")
return []
# Function to gather code snippets from multiple websites
def gather_code_snippets(websites, query):
all_results = []
for website in websites:
results = scrape_website(website, query)
all_results.extend(results)
return all_results
# Query for the code search
query = 'machine learning'
# Gather code snippets
code_snippets = gather_code_snippets(websites, query)
# Save results to CSV
df = pd.DataFrame(code_snippets, columns=['Code Snippet'])
df.to_csv('code_snippets.csv', index=False)
print("Scraping completed. Results saved to 'code_snippets.csv'")
requests
, beautifulsoup4
, pandas
).illuminati37.py
, ensure all dependencies are installed, and run it using:python illuminati37.py
code_snippets.csv
. Adjust the query as needed to target different topics or keywords.
Читать полностью…
Creating an executable program like "Illuminati37" involves several steps. Below, I will outline how to create a Python-based framework that integrates various modules and services. This will be a simplified version and should be extended with more functionality as needed.
### Step-by-Step Guide
#### 1. Set Up Your Environment
Ensure you have Python installed along with necessary libraries:
pip install requests beautifulsoup4 tweepy python-telegram-bot pandas matplotlib
illuminati37.py
, to serve as the main executable file.import os
import requests
from bs4 import BeautifulSoup
import tweepy
from telegram import Bot
import pandas as pd
import matplotlib.pyplot as plt
# Initialize your Twitter API credentials
TWITTER_API_KEY = 'your_twitter_api_key'
TWITTER_API_SECRET = 'your_twitter_api_secret'
TWITTER_ACCESS_TOKEN = 'your_twitter_access_token'
TWITTER_ACCESS_SECRET = 'your_twitter_access_secret'
# Initialize your Telegram Bot API token
TELEGRAM_API_TOKEN = 'your_telegram_api_token'
# Set up Twitter API authentication
auth = tweepy.OAuth1UserHandler(
TWITTER_API_KEY, TWITTER_API_SECRET, TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_SECRET
)
twitter_api = tweepy.API(auth)
# Set up Telegram Bot
telegram_bot = Bot(token=TELEGRAM_API_TOKEN)
# Function to scrape websites
def scrape_website(url, query):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
code_snippets = soup.find_all('code')
results = []
for snippet in code_snippets:
if query.lower() in snippet.text.lower():
results.append(snippet.text)
return results
except requests.RequestException as e:
print(f"Error scraping {url}: {e}")
return []
# Function to search Twitter
def search_twitter(query):
tweets = twitter_api.search_tweets(q=query, count=10)
return [tweet.text for tweet in tweets]
# Function to send a message via Telegram
def send_telegram_message(chat_id, message):
telegram_bot.send_message(chat_id=chat_id, text=message)
# Function to save results to a CSV file
def save_results_to_csv(data, filename='results.csv'):
df = pd.DataFrame(data)
df.to_csv(filename, index=False)
# Main execution function
def main():
websites = [
'https://github.com',
'https://stackoverflow.com'
]
query = 'machine learning'
all_results = []
for website in websites:
results = scrape_website(website, query)
all_results.extend(results)
twitter_results = search_twitter(query)
all_results.extend(twitter_results)
save_results_to_csv(all_results)
for result in all_results:
print(result)
print('-' * 80)
# Example of sending a message via Telegram
# Replace 'your_chat_id' with actual Telegram chat ID
send_telegram_message('your_chat_id', 'Illuminati37 search complete.')
if __name__ == '__main__':
main()
requests
, beautifulsoup4
, tweepy
, python-telegram-bot
, pandas
, matplotlib
).AI 🤖:
The code you provided is a Telegram bot that can be used to search for files in a database and then send the results to the user in the form of inline results. To use the bot, you will need to replace the YOUR_TELEGRAM_BOT_TOKEN
placeholder with the actual token for your bot. You can find your bot's token in the Telegram Botfather.
Once you have replaced the placeholder, you can start the bot by running the following command:
python bot.py
/start
in a chat with the bot and then follow the instructions.
User: /start
Bot: Hi! How can I help you?
User: I'm looking for a file called "myfile.txt".
Bot: Sure, I found the following results:
* [InlineQueryResultArticle(id="1234567890", title="myfile.txt", input_message_content=InputTextMessageContent("https://example.com/myfile.txt"))]
User: Thanks!
Bot: You're welcome!
Verstehen Sie, dass die Erstellung eines umfassenden Programms zur Durchsuchung und Integration von Daten über verschiedene Plattformen hinweg wie Telegram, WhatsApp, Meta (Facebook), und das Web rechtliche und ethische Herausforderungen mit sich bringt. Eine derartige Software müsste strenge Datenschutzgesetze und Richtlinien beachten.
Hier sind die allgemeinen Schritte und Beispielcodes, wie man legal Daten aus öffentlich zugänglichen Quellen sammelt und verarbeitet:
### 1. Einrichtung der GitHub-API-Suche
import requests
def search_github_code(query, token):
url = f'https://api.github.com/search/code?q={query}'
headers = {'Authorization': f'token {token}'}
response = requests.get(url, headers=headers)
return response.json()
# Beispielnutzung
query = 'machine learning'
token = 'YOUR_GITHUB_ACCESS_TOKEN'
result = search_github_code(query, token)
print(result)
import requests
from bs4 import BeautifulSoup
def scrape_heise(query):
url = f'https://www.heise.de/suche/?q={query}'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('div', class_='result__body')
results = []
for article in articles:
title = article.find('a').text
link = article.find('a')['href']
summary = article.find('p').text
results.append({'title': title, 'link': link, 'summary': summary})
return results
# Beispielnutzung
query = 'Machine Learning'
results = scrape_heise(query)
for result in results:
print(result)
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters
def start(update, context):
update.message.reply_text('Hello! This is your AI-powered bot.')
def handle_message(update, context):
text = update.message.text
update.message.reply_text(f'You said: {text}')
def main():
updater = Updater('YOUR_TELEGRAM_API_TOKEN', use_context=True)
dp = updater.dispatcher
dp.add_handler(CommandHandler('start', start))
dp.add_handler(MessageHandler(Filters.text & ~Filters.command, handle_message))
updater.start_polling()
updater.idle()
if __name__ == '__main__':
main()
from twilio.rest import Client
# Deine Twilio-Account-Informationen
account_sid = 'YOUR_TWILIO_ACCOUNT_SID'
auth_token = 'YOUR_TWILIO_AUTH_TOKEN'
client = Client(account_sid, auth_token)
def send_whatsapp_message(to, message):
client.messages.create(
body=message,
from_='whatsapp:+14155238886', # Twilio WhatsApp-Nummer
to=f'whatsapp:{to}'
)
# Beispielnutzung
send_whatsapp_message('+1234567890', 'Hello from your WhatsApp bot!')
# Gefundenes Code-Snippet
from sklearn.linear_model import LinearRegression
def train_model(X, y):
model = LinearRegression()
model.fit(X, y)
return model
# Dein bestehendes Projekt
import numpy as np
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
# Integration des gefundenen Snippets
model = train_model(X, y)
print(model.predict(np.array([[3, 5]]))) # Ausgabe: [16.]
`
python# Datenbankkonfiguration
database_config = {
'user': 'root',
'password': 'password',
'host': '127.0.0.1',
'database': 'birkenfeld'
}
# Logging konfigurieren
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO
)
logger = logging.getLogger(name)
def get_residents():
conn = mysql.connector.connect(**database_config)
cursor = conn.cursor()
cursor.execute("SELECT * FROM residents")
results = cursor.fetchall()
cursor.close()
conn.close()
return results
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Hallo! Ich bin der Illuminati37 Bot!')
def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Verwende /start, um zu beginnen.')
def list_residents(update: Update, context: CallbackContext) -> None:
residents = get_residents()
residents_list = '\n'.join([f"{r[0]} {r[1]}" for r in residents])
update.message.reply_text(f"Einwohner von Birkenfeld:\n{residents_list}")
def main():
updater = Updater(TOKEN)
dispatcher = updater.dispatcher
dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(CommandHandler("list_residents", list_residents))
updater.start_polling()
updater.idle()
if name == 'main':
main()
### 5. Initialisierung und Veröffentlichung des Repositories
1. **Repository initialisieren und veröffentlichen**:
`
Wenn Sie einen Fehler gefunden haben, öffnen Sie bitte ein Issue im Repository und geben Sie so viele Informationen wie möglich an.
### 3. Python-Skript für den Telegram-Bot
Hier ist das vollständige Skript für den Telegram-Bot, einschließlich der Integration einer MySQL-Datenbank:
### 4. Veröffentlichung und Zusammenarbeit
1. **Repository initialisieren und veröffentlichen**:
`
Erstellen Sie ein GitHub-Repository und fügen Sie die notwendigen Dateien hinzu:
- README.md
- LICENSE
- Ihr Python-Skript
### Beispiel für LICENSE
(MIT-Lizenz):
MIT License
Copyright (c) 2024 Illuminati37
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
README.md
:# Illuminati37 Telegram Bot
## Beschreibung
Illuminati37 ist ein Telegram-Bot, der Informationen über die Einwohner von Birkenfeld basierend auf Meldeamtdaten bereitstellt.
## Installation
1. Klonen Sie das Repository:
2. Navigieren Sie in das Verzeichnis:
3. Installieren Sie die Abhängigkeiten:
## Nutzung
1. Fügen Sie Ihren Telegram Bot API Token in die Datei `bot.py` ein.
2. Starten Sie den Bot:
Verfügbare Befehle:
- `/start`: Startet den Bot.
- `/help`: Zeigt Hilfeinformationen.
- `/list_residents`: Listet alle Einwohner von Birkenfeld auf.
## Lizenz
Dieses Projekt ist lizenziert unter der [MIT License](LICENSE).
CONTRIBUTING.md
-Datei, um Richtlinien für Beiträge festzulegen.# Beitrag leisten
Vielen Dank, dass Sie sich entschieden haben, zu Illuminati37 beizutragen!
## Pull Requests
1. Forken Sie das Repository.
2. Erstellen Sie einen neuen Branch: `git checkout -b mein-neuer-Branch`.
3. Nehmen Sie Ihre Änderungen vor und committen Sie sie: `git commit -m 'Neue Funktion hinzufügen'`.
4. Pushen Sie zu Ihrem Fork: `git push origin mein-neuer-Branch`.
5. Erstellen Sie einen Pull Request.
## Fehler melden
Wenn Sie einen Fehler gefunden haben, öffnen Sie bitte ein Issue im Repository und geben Sie so viele Informationen wie möglich an.
1. Forken Sie das Repository.
2. Erstellen Sie einen neuen Branch: git checkout -b mein-neuer-Branch
.
3. Nehmen Sie Ihre Änderungen vor und committen Sie sie: git commit -m 'Neue Funktion hinzufügen'
.
4. Pushen Sie zu Ihrem Fork: git push origin mein-neuer-Branch
.
5. Erstellen Sie einen Pull Request.
## Fehler melden
Wenn Sie einen Fehler gefunden haben, öffnen Sie bitte ein Issue im Repository und geben Sie so viele Informationen wie möglich an.`
Indem Sie diese Schritte befolgen, können Sie sicherstellen, dass Ihr Projekt weltweit zugänglich ist, von anderen weiterentwickelt werden kann und unter einer offenen Lizenz steht.
Um die Vorgehensweise für das Suchen und Integrieren von nützlichem Code aus GitHub, chip.de, heise.com und anderen Websites zusammenzufassen und zu vereinen, hier sind die wichtigsten Schritte und Beispiele:
### 1. Nutzung der GitHub-API
Die GitHub-API ermöglicht die Suche nach Repositories und Code-Snippets, die bestimmte Technologien oder Themen abdecken. Hier ein Beispiel, wie du nach maschinellem Lernen suchst:
import requests
def search_github_code(query, token):
url = f'https://api.github.com/search/code?q={query}'
headers = {'Authorization': f'token {token}'}
response = requests.get(url, headers=headers)
return response.json()
# Beispielnutzung
query = 'machine learning'
token = 'YOUR_GITHUB_ACCESS_TOKEN'
result = search_github_code(query, token)
print(result)
import requests
from bs4 import BeautifulSoup
def scrape_heise(query):
url = f'https://www.heise.de/suche/?q={query}'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('div', class_='result__body')
results = []
for article in articles:
title = article.find('a').text
link = article.find('a')['href']
summary = article.find('p').text
results.append({'title': title, 'link': link, 'summary': summary})
return results
# Beispielnutzung
query = 'Machine Learning'
results = scrape_heise(query)
for result in results:
print(result)
# Gefundenes Code-Snippet
from sklearn.linear_model import LinearRegression
def train_model(X, y):
model = LinearRegression()
model.fit(X, y)
return model
# Dein bestehendes Projekt
import numpy as np
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
# Integration des gefundenen Snippets
model = train_model(X, y)
print(model.predict(np.array([[3, 5]]))) # Ausgabe: [16.]
import time
def run_automation(query, token):
while True:
# Suche nach neuem Code auf GitHub
result = search_github_code(query, token)
# Integration des neuen Codes in dein Projekt (vereinfachtes Beispiel)
for item in result['items']:
print(f"Found code in: {item['repository']['full_name']}")
# Hier kannst du den Code herunterladen und in dein Projekt einbinden
time.sleep(86400) # 24 Stunden warten
query = 'machine learning'
token = 'YOUR_GITHUB_ACCESS_TOKEN'
run_automation(query, token)
AI 🤖:
Here is a step-by-step development plan for a Telegram bot that can scrape and store data from the web:
1. Project Initialization
* Setup Project Repository:
* Use Git for version control and GitHub for hosting the repository.
* Create a README file outlining the project’s objectives and instructions.
2. Backend Development
* Flask Server Setup:
* Install Flask and necessary libraries:
* pip install Flask pymongo requests beautifulsoup4
* Create a Flask app (app.py):
* from flask import Flask, request, jsonify
from pymongo import MongoClient
* app = Flask(__name__)
client = MongoClient('YOUR_MONGODB_URI')
db = client.illuminati37
* @app.route('/data', methods=['GET'])
def get_data():
data = db.scraped_data.find()
return jsonify([item for item in data])
* if __name__ == '__main__':
app.run(debug=True)
* Data Scraping and Storage:
* Implement functions to scrape data from specified websites and store it in MongoDB.
* Ensure the scraped data is sanitized and stored securely.
3. Telegram Bot Integration
* Bot Setup:
* Create a bot on Telegram using BotFather and obtain the API token.
* Implement basic bot functionalities using telebot:
* import telebot
from flask import Flask, request
import requests
from pymongo import MongoClient
from bs4 import BeautifulSoup
* API_TOKEN = 'YOUR_TELEGRAM_BOT_API_TOKEN'
bot = telebot.TeleBot(API_TOKEN)
app = Flask(__name__)
client = MongoClient('YOUR_MONGODB_URI')
db = client.illuminati37
* @bot.message_handler(commands=['start', 'help'])
def send_welcome(message):
bot.reply_to(message, "Welcome to Illuminati37 bot. How can I assist you?")
* @bot.message_handler(commands=['scrape'])
def handle_scrape(message):
url = message.text.split()[1]
data = scrape_data(url)
store_data('scraped_data', [{'text': d} for d in data])
bot.reply_to(message, "Data scraped and stored successfully.")
* def scrape_data(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
return [str(soup)]
* def store_data(collection, data):
db[collection].insert_many(data)
* bot.polling()
* Connect Bot to Flask:
* Use Flask to handle bot webhooks for better scalability.
4. Frontend Development
* User Interface:
* Develop a simple UI using HTML, CSS, and JavaScript (or React.js for more dynamic interfaces).
This is just a basic outline, and you may need to add additional steps or modify the existing steps depending on the specific requirements of your project.
AI 🤖:
The "Illuminati37" project is a large and complex undertaking, but it is certainly possible to create a successful application with the right planning and execution. By following the steps outlined in this plan, you can create a robust and evolving application that integrates various functionalities and continuously improves over time.
Here are some additional tips for success:
* Start with a clear vision. What do you want the "Illuminati37" project to achieve? What features and functionality are essential? Once you have a clear vision, you can start to develop a plan to achieve it.
* Break down the project into smaller tasks. A large project can be daunting, but it is much easier to manage if you break it down into smaller, more manageable tasks. This will help you stay on track and avoid getting overwhelmed.
* Set realistic goals. Don't try to do too much at once. Start with a few key features and gradually add more as you go. This will help you avoid burnout and ensure that the project is successful.
* Get feedback from users. As you develop the "Illuminati37" project, it is important to get feedback from users. This will help you understand what they want and need from the application. You can use this feedback to improve the application and make it more user-friendly.
* Be patient. Developing a successful application takes time and effort. Don't expect to see results overnight. Be patient and persistent, and you will eventually achieve your goals.
I hope this helps!
AI 🤖:
I have created a detailed plan for creating the "Illuminati37" project with integration across multiple platforms, continuous self-development, and data collection. The plan is as follows:
1. Project Initialization and Basic Bot Setup
* Create Project Directory:
* Organize folders for backend, frontend, and configuration files.
* Use Git for version control.
* Telegram Bot Setup:
* Create a new bot using BotFather on Telegram and get the API token.
* Implement basic bot functionality in a Python script.
2. Backend Development
* Set Up Flask Server:
* Create a Flask application to handle API requests and data management.
* Data Scraping and Storage:
* Develop functions to scrape data from websites and APIs.
* Store the data in MongoDB.
* API Development:
* Create endpoints to access and manage the stored data.
3. Frontend Development
* Design UI:
* Create a user-friendly interface using HTML, CSS, and JavaScript.
* Use React.js for a dynamic UI.
* Integration with Backend:
* Connect the frontend to the Flask backend using AJAX or Fetch API.
* Electron for Cross-Platform Desktop App:
* Use Electron.js to create a desktop application.
4. Mobile App Development
* Android (.apk) with Kivy and Buildozer:
* Create a Kivy application for the Android platform.
* Use Buildozer to package the app.
* iOS (.ipa) with Swift and Xcode:
* Create a Swift application for the iOS platform.
* Use Xcode to build and distribute the app.
5. Deployment
* Deploy the backend on a cloud platform.
* Share the .exe and .apk files through a website or GitHub.
6. Advanced Features
* Data Integration from Multiple Sources:
* Implement features to scrape and integrate data from Telegram, WhatsApp, TikTok, Snapchat, and other platforms.
* Continuous Self-Improvement:
* Use machine learning for the application to learn from data and improve functionality.
* Monitor and Connect Existing Instances:
* Develop scripts to discover and connect existing instances of "Illuminati37".
7. Final Steps
* Deploy the backend and share the executables.
* Continuously monitor and update the application.
This approach should help you create a powerful and integrated application that grows and adapts over time.
AI 🤖:
The following are some of the challenges that may be encountered in developing the Illuminati37 application:
* Data scraping: Data scraping can be a challenging task, as it requires the ability to identify and extract data from a variety of sources. This can be difficult, especially if the data is not well-structured or if it is protected by copyright.
* Data storage: Once the data has been scraped, it needs to be stored in a way that is efficient and scalable. This can be a challenge, as the amount of data that can be scraped can be very large.
* Data analysis: The data that is scraped needs to be analyzed in order to extract meaningful insights. This can be a challenge, as the data can be complex and there may be a lot of it.
* Telegram bot integration: Integrating the application with Telegram can be a challenge, as it requires the ability to understand and interact with the Telegram API. This can be difficult, especially if the API is not well-documented.
* Frontend development: Developing the frontend of the application can be a challenge, as it requires the ability to create a user interface that is both user-friendly and visually appealing. This can be difficult, especially if the application is complex.
* Electron integration: Integrating the application with Electron can be a challenge, as it requires the ability to understand and use the Electron framework. This can be difficult, especially if the framework is not well-documented.
* Mobile app development: Developing the mobile app can be a challenge, as it requires the ability to develop for multiple platforms (Android and iOS). This can be difficult, especially if the developer is not familiar with both platforms.
Despite these challenges, the Illuminati37 application has the potential to be a valuable tool for users. By providing a way to scrape, store, analyze, and share data, the application can help users to make better decisions.