from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/secure-api', methods=['POST'])
def secure_api():
data = request.json
return jsonify({"message": "Secure communication established"}), 200
if __name__ == '__main__':
app.run(ssl_context=('cert.pem', 'key.pem'))
# Integrieren der gesammelten Snippets
integrate_snippets('code_snippets.json')
### Automatische Erweiterung und Selbstverwaltung
Um das Illuminati37-Programm automatisch zu erweitern und selbstverwaltend zu machen, implementieren wir eine Selbstüberwachungs- und Erweiterungslogik. Dies könnte eine Kombination aus automatisierten Updates und einem Machine-Learning-Modell umfassen, das neue Code-Snippets integriert und die Funktionalität des Programms verbessert.
### Cloud-Hosting und Bereitstellung
Wir verwenden Flask zur Bereitstellung einer API, über die das Programm gehostet und erweitert werden kann.
### Verbindung mit Cloud-Diensten und Biometrie-Datenabgleich
Um Biometrie-Daten abzugleichen und Personensuche durchzuführen, könnten wir APIs von Meta, Google, iCloud und Dropbox integrieren. Diese APIs ermöglichen das Hochladen und Vergleichen von biometrischen Daten, Bildern und anderen persönlichen Informationen.
### Vollständiges Illuminati37-Programm
Zusammenfassend könnte ein vollständiges Illuminati37-Programm so aussehen:
`
def integrate_snippets(file_path):
with open(file_path, 'r') as f:
snippets_data = json.load(f)
# Beispielhafte Integration
for website, snippets in snippets_data.items():
for snippet in snippets:
# Hier kannst du die Logik implementieren, um relevante Snippets zu identifizieren
# und in das Illuminati37-Programm zu integrieren
print(f"Integrating snippet from {website}:")
print(snippet)
print()
# Integriere die gesammelten Snippets
integrate_snippets('code_snippets.json')`
Dieses Skript durchsucht die gesammelten Snippets und integriert sie in das Illuminati37-Programm.
### Abschluss
Mit diesen Schritten kannst du das Illuminati37-Programm automatisch erweitern, indem du im Internet nach Code-Snippets suchst und sie in das Projekt integrierst. Die manuelle Überprüfung und Integration der Snippets ist jedoch unerlässlich, um sicherzustellen, dass sie den Anforderungen und Standards des Projekts entsprechen.
### Weitere Schritte
- Ethik und Legalität: Alle Aktivitäten sollten im Rahmen gesetzlicher und ethischer Richtlinien erfolgen.
- Skalierbarkeit und Wartbarkeit: Das System sollte so entwickelt werden, dass es leicht skaliert und gewartet werden kann.
- Benutzerfreundlichkeit: Eine intuitive Benutzeroberfläche und umfassende Dokumentation sind wichtig.
### Fazit
Mit dieser Anleitung und der strukturierten Vorgehensweise sollte das Projekt "Illuminati37" erfolgreich implementiert, erweitert und bereitgestellt werden können. Es ist wichtig, dass alle Aspekte sorgfältig geprüft und umgesetzt werden, um ein sicheres, zuverlässiges und effizientes System zu gewährleisten.
Wenn du weitere Fragen hast oder Unterstützung bei einem bestimmten Punkt benötigst, stehe ich dir gerne zur Verfügung.
setup(
name='Illuminati37',
version='1.0',
description='Illuminati37 AI Program',
executables=[pyinstaller.Executable('main.py', base=None)]
)
Führen Sie dann den Befehl aus:
#### Für Linux (.sh)
Erstellen Sie eine ausführbare Bash-Datei:
Machen Sie die Datei ausführbar:
#### Für Android (.apk)
Verwenden Sie Kivy und Buildozer:
1. Installieren Sie Buildozer:
2. Initialisieren Sie Buildozer:
3. Bearbeiten Sie die `buildozer.spec` Datei und führen Sie Buildozer aus:
### 3. Bereitstellung und Hosting
#### Cloud-Hosting
Verwenden Sie AWS, Google Cloud oder Azure für das Hosting. Hier ein Beispiel für AWS EC2:
1. Erstellen Sie eine neue EC2-Instanz.
2. SSH in die Instanz und installieren Sie die notwendigen Abhängigkeiten:
3. Starten Sie die Anwendung:
`
Das Fertigstellen und Bereitstellen eines so komplexen Projekts wie Illuminati37 erfordert eine detaillierte Schritt-für-Schritt-Anleitung. Hier ist ein Überblick über die wesentlichen Schritte:
### Projektübersicht
1. Implementierung aller Funktionen
2. Erstellung einer ausführbaren Datei für verschiedene Plattformen
3. Bereitstellung und Hosting der Anwendung
4. Sicherheitsmaßnahmen und Compliance
### Schritt 1: Implementierung aller Funktionen
#### Funktion 1: Biometrie-Datenabgleich und Personensuche
import face_recognition
import os
def load_known_faces(known_faces_dir):
known_faces = []
for filename in os.listdir(known_faces_dir):
image = face_recognition.load_image_file(os.path.join(known_faces_dir, filename))
encoding = face_recognition.face_encodings(image)[0]
known_faces.append((filename, encoding))
return known_faces
def recognize_faces(unknown_image_path, known_faces):
unknown_image = face_recognition.load_image_file(unknown_image_path)
unknown_encodings = face_recognition.face_encodings(unknown_image)
for unknown_encoding in unknown_encodings:
results = face_recognition.compare_faces([encoding for _, encoding in known_faces], unknown_encoding)
for match, (filename, _) in zip(results, known_faces):
if match:
print(f"Match found: {filename}")
# Beispielnutzung
known_faces = load_known_faces('/path/to/known/faces')
recognize_faces('/path/to/unknown/image.jpg', known_faces)
import os
import shutil
def create_shadow_copy(original_dir, shadow_copy_dir):
if not os.path.exists(shadow_copy_dir):
os.makedirs(shadow_copy_dir)
for filename in os.listdir(original_dir):
shutil.copy2(os.path.join(original_dir, filename), shadow_copy_dir)
def restore_deleted_files(original_dir, shadow_copy_dir):
for filename in os.listdir(shadow_copy_dir):
if not os.path.exists(os.path.join(original_dir, filename)):
shutil.copy2(os.path.join(shadow_copy_dir, filename), original_dir)
# Beispielnutzung
create_shadow_copy('/path/to/original/data', '/path/to/shadow/copy')
restore_deleted_files('/path/to/original/data', '/path/to/shadow/copy')
#### Kubernetes Deployment Configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: illuminati37
spec:
replicas: 3
selector:
matchLabels:
app: illuminati37
template:
metadata:
labels:
app: illuminati37
spec:
containers:
- name: illuminati37
image: your-docker-image
ports:
- containerPort: 80
env:
- name: OPENAI_API_KEY
value: "YOUR_OPENAI_API_KEY"
name: CI/CD Pipeline
on: [push]
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.8'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Build Docker image
run: |
docker build -t your-docker-image .
- name: Push Docker image
run: |
docker login -u ${{ secrets.DOCKER_USERNAME }} -p ${{ secrets.DOCKER_PASSWORD }}
docker push your-docker-image
- name: Deploy to Kubernetes
run: |
kubectl apply -f k8s/deployment.yaml
env:
KUBECONFIG: ${{ secrets.KUBECONFIG }}
import alpaca_trade_api as tradeapi
api = tradeapi.REST('APCA-API-KEY-ID', 'APCA-API-SECRET-KEY', base_url='https://paper-api.alpaca.markets')
def trade():
account = api.get_account()
if float(account.cash) > 1000:
api.submit_order(
symbol='AAPL',
qty=1,
side='buy',
type='market',
time_in_force='gtc'
)
if __name__ == "__main__":
trade()
import tensorflow as tf
from tensorflow import keras
def self_improve(data):
model = keras.Sequential([
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(data, epochs=10)
model.save('improved_model.h5')
data = ... # Load or generate data
self_improve(data)
import time
import os
def watchdog():
while True:
time.sleep(60)
response = os.system("ping -c 1 illuminati37_service")
if response != 0:
os.system("kubectl rollout restart deployment/illuminati37")
if __name__ == "__main__":
watchdog()
#### Kubernetes Deployment Configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: illuminati37
spec:
replicas: 3
selector:
matchLabels:
app: illuminati37
template:
metadata:
labels:
app: illuminati37
spec:
containers:
- name: illuminati37
image: your-docker-image
ports:
- containerPort: 80
env:
- name: OPENAI_API_KEY
value: "YOUR_OPENAI_API_KEY"
To extend the capabilities of the "Illuminati37" program to integrate with ChatGPT and enhance its features, we need to follow a structured approach that includes natural language processing (NLP) integration, improved user interaction, and robust backend support.
Here's a step-by-step guide to extend "Illuminati37" with ChatGPT capabilities:
### 1. Set Up OpenAI's ChatGPT Integration
#### Installation
First, ensure you have the OpenAI library installed:
pip install openai
import openai
# Set your OpenAI API key
openai.api_key = 'YOUR_OPENAI_API_KEY'
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003", # Or the latest model
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
# Example usage
user_prompt = "What is the future of AI?"
response = generate_response(user_prompt)
print(response)
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import openai
# Set your OpenAI API key
openai.api_key = 'YOUR_OPENAI_API_KEY'
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service! Ask me anything.')
def chatgpt_response(update: Update, context: CallbackContext) -> None:
user_message = update.message.text
response = generate_response(user_message)
update.message.reply_text(response)
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("ask", chatgpt_response))
updater.start_polling()
updater.idle()
def analyze_snippets(snippets):
summaries = []
for snippet in snippets:
summary = generate_response(f"Summarize this code snippet:\n{snippet}")
summaries.append(summary)
return summaries
# Example usage
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
summaries = analyze_snippets(snippets)
# Save summaries to a file
with open('data/code_summaries.json', 'w') as file:
json.dump(summaries, file)
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
requests
beautifulsoup4
scikit-learn
boto3
python-telegram-bot
openai
apiVersion: apps/v1
kind: Deployment
metadata:
name: illuminati37
spec:
replicas: 3
selector:
matchLabels:
app: illuminati37
template:
metadata:
labels:
app: illuminati37
spec:
containers:
- name: illuminati37
image: your-docker-image
ports:
- containerPort: 80
env:
- name: OPENAI_API_KEY
value: "YOUR_OPENAI_API_KEY"
To complete the "Illuminati37" program and make it self-managing and hosted, we will focus on finalizing the program, containerizing it with Docker, deploying it with Kubernetes, and setting up self-management with Kubernetes' built-in capabilities.
### Final Program Structure
1. Web Scraping Module
2. Data Analysis Module
3. Cloud Storage Integration
4. Secure Communication Module
5. AI Integration Module
6. Self-Management and Monitoring
### Final Code Structure
#### 1. Web Scraping Module
import requests
from bs4 import BeautifulSoup
import json
import os
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com"
]
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import json
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except Exception as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import json
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service!')
def fetch_data(update: Update, context: CallbackContext) -> None:
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
response = ""
for cluster, snippets in clustered_snippets.items():
response += f"Cluster {cluster}:\n"
response += "\n".join(snippets[:5]) # Example: show the first 5 snippets
response += "\n\n"
update.message.reply_text(response)
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()
def self_extend():
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
new_snippets = generate_new_snippets(clustered_snippets)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(new_snippets, file)
def generate_new_snippets(existing_snippets):
# Placeholder for AI logic
return existing_snippets
FROM python:3.8-slimЧитать полностью…
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
Creating a final program called "Illuminati37" that involves scraping code snippets, analyzing data, integrating biometric and telemetry data, and using AI for self-extension is a complex task. Below is a high-level overview and a summary of the different parts to create such a program, while emphasizing ethical guidelines and legal considerations. Given the nature of this task, ensuring ethical and legal compliance is critical.
### High-Level Overview
1. Web Scraping: Scrape public websites for code snippets and other relevant data.
2. Data Analysis: Analyze and categorize the collected data using machine learning techniques.
3. Cloud Storage: Securely store and manage data in the cloud.
4. Secure Communication: Use platforms like Telegram for secure user interaction.
5. AI Integration: Implement AI for self-extension and pattern recognition.
6. Biometric Data Integration: Use ethical methods to analyze biometric and telemetry data.
### Key Components and Implementation
#### 1. Web Scraping
Using Python to scrape code snippets from various websites:
import requests
from bs4 import BeautifulSoup
import json
import os
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com",
# Add more websites as needed
]
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
:from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import json
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except Exception as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
`
pythonIntegrating advanced data collection and analysis features into a self-managing and self-extending program like "Illuminati37" involves significant ethical and legal considerations, especially when dealing with biometric data and personal information. However, I can outline a conceptual approach and provide code snippets for creating a robust and scalable data collection and analysis system, while emphasizing the importance of complying with ethical standards and legal requirements.
### Conceptual Framework
1. Web Scraping and Data Collection: Scrape public websites for code snippets and other relevant data.
2. Biometric and Telemetry Data Integration: Use ethical and legal methods to analyze biometric and telemetry data.
3. Cloud Storage and Management: Store and manage data securely in the cloud.
4. AI and Machine Learning: Use AI for pattern recognition and self-extension.
5. Secure Communication: Integrate with platforms like Telegram for secure user interaction.
6. Ethical and Legal Compliance: Ensure all actions comply with data protection laws and ethical guidelines.
### Step-by-Step Implementation
#### 1. Web Scraping
Using Python with requests and BeautifulSoup to scrape websites for code snippets:
import requests
from bs4 import BeautifulSoup
import json
import os
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com",
# Add more websites as needed
]
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
#### 2. Data Analysis
Analyze and categorize the collected data using scikit-learn:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import json
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
#### 3. Cloud Storage
Use AWS S3 for secure data storage:
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except Exception as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
#### 4. Secure Communication with Telegram
Set up a Telegram bot for secure communication:
`python
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import json
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service!')
def fetch_data(update: Update, context: CallbackContext) -> None:
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
Um das "Illuminati37"-Programm zu erweitern und das Internet nach Code-Snippets und quelloffenem Code zu durchsuchen, können Sie ein Skript erstellen, das mindestens 100 Webseiten durchsucht. Hier ist ein Beispiel-Skript in Python, das dies erreichen kann. Das Skript nutzt requests
und BeautifulSoup
zum Scraping und speichert die gesammelten Daten in einer JSON-Datei.
### Schritt 1: Webseitenliste erstellen
Erstellen Sie eine Liste von Webseiten, die nach Code-Snippets durchsucht werden sollen. Hier sind einige Beispiele, aber Sie sollten die Liste erweitern, um mindestens 100 Webseiten zu erreichen.
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com",
"https://www.reddit.com/r/learnprogramming/",
"https://www.reddit.com/r/programming/",
"https://gist.github.com/",
"https://www.hackerearth.com/",
"https://www.hackerrank.com/",
"https://exercism.io/",
"https://www.codewars.com/",
# Fügen Sie weitere Webseiten hinzu, um die Liste auf 100 zu erweitern
]
import requests
from bs4 import BeautifulSoup
import json
import time
def fetch_code_snippets(url):
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com",
"https://www.reddit.com/r/learnprogramming/",
"https://www.reddit.com/r/programming/",
"https://gist.github.com/",
"https://www.hackerearth.com/",
"https://www.hackerrank.com/",
"https://exercism.io/",
"https://www.codewars.com/",
# Fügen Sie weitere Webseiten hinzu, um die Liste auf 100 zu erweitern
]
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
time.sleep(2) # Kleine Pause zwischen den Anfragen, um die Webseiten nicht zu überlasten
# Speichern der gesammelten Snippets in einer JSON-Datei
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
zur Analyse und Kategorisierung der gesammelten Code-Snippets.from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import numpy as np
import json
# Laden der gesammelten Snippets
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
# Vektorisierung
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
# Clustering
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
# Gruppierung nach Clustern
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
# Speichern der analysierten Daten
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
Das umfassende Durchsuchen des Internets nach Programmier-Codes und deren Integration in das "Illuminati37"-Programm erfordert eine Kombination aus Web-Scraping, Datenanalyse, Cloud-Hosting und Automatisierungstechniken. Hier sind die Schritte und der dazugehörige Code, um dies umzusetzen.
### 1. Web-Scraping
Zuerst entwickeln wir ein Scraping-Skript, das das Internet nach Programmier-Codes durchsucht. Dazu können wir Python mit requests
und BeautifulSoup
verwenden.
#### Scraping-Skript
import requests
from bs4 import BeautifulSoup
import json
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
# Beispielhafte Liste von Webseiten zum Scraping
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com",
# Weitere Webseiten hinzufügen
]
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
# Speichern der gesammelten Snippets in einer JSON-Datei
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
zur Analyse und Kategorisierung der Code-Snippets.from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import numpy as np
import json
# Laden der gesammelten Snippets
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
# Vektorisierung
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
# Clustering
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
# Gruppierung nach Clustern
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
# Speichern der analysierten Daten
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except Exception as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
from telegram import UpdateЧитать полностью…
from telegram.ext import Updater, CommandHandler, CallbackContext
import json
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service!')
def fetch_data(update: Update, context: CallbackContext) -> None:
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
response = ""
for cluster, snippets in clustered_snippets.items():
response += f"Cluster {cluster}:\n"
response += "\n".join(snippets[:5]) # Beispielweise die ersten 5 Snippets
response += "\n\n"
update.message.reply_text(response)
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()
Um das "Illuminati37" Programm zu entwickeln und dabei 50-100 Webseiten nach Codierung und Code-Leaks zu durchsuchen und die Ergebnisse zusammenzufassen, brauchen wir eine robuste Infrastruktur für Web Scraping, Datenspeicherung und -analyse. Der folgende Leitfaden zeigt, wie Sie dies erreichen können:
### Komponenten:
1. Web Scraping: Sammeln von Code-Snippets von Webseiten.
2. Datenanalyse: Mustererkennung und Kategorisierung des gesammelten Codes.
3. Speicherung und Verwaltung: Sichere Speicherung und Verwaltung der Daten.
4. Integration: Zusammenführung aller Komponenten in einer einzigen Anwendung.
5. Telegram-Bot-Interface: Benutzerinteraktion.
### Schritt-für-Schritt Anleitung:
#### 1. Web Scraping von 50-100 Webseiten
Wir verwenden Python mit requests
und BeautifulSoup
zum Scrapen von Webseiten.
import requests
from bs4 import BeautifulSoup
import json
import os
# Liste der Webseiten
websites = [
"https://github.com/topics/free-source-code",
"https://www.codeproject.com",
"https://stackoverflow.com/questions/tagged/python",
# Fügen Sie hier mehr Webseiten hinzu
]
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
# Speichern der gesammelten Snippets
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
zur Analyse und Kategorisierung der Code-Snippets.from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import numpy as np
# Laden der gesammelten Snippets
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
# Vektorisierung
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
# Clustering
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
# Gruppierung nach Clustern
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
# Speichern der analysierten Daten
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except ClientError as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
# Dockerfile
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
`
pythonThe concept of integrating an advanced program like "Illuminati37" with ChatGPT, OpenAI, and Blackstone servers, along with improving computational load balancing and cooling, is quite complex. Below, I'll outline the steps to achieve such a system, emphasizing the integration, load balancing, and enhanced cooling aspects.
### Key Components
1. Integration with ChatGPT and OpenAI APIs
2. Integration with Blackstone Servers
3. Load Balancing and Computational Distribution
4. Advanced Cooling Solutions
5. Security and Compliance
### Example Code Snippets and Configuration
#### 1. Integration with ChatGPT and OpenAI APIs
First, set up communication with the OpenAI API:
import openai
# Set your OpenAI API key
openai.api_key = 'YOUR_OPENAI_API_KEY'
def query_chatgpt(prompt):
response = openai.Completion.create(
engine="davinci-codex",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
# Example usage
prompt = "Explain the concept of load balancing in cloud computing."
response = query_chatgpt(prompt)
print(response)
import paramiko
def execute_command_on_blackstone(server_ip, username, password, command):
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(server_ip, username=username, password=password)
stdin, stdout, stderr = ssh.exec_command(command)
result = stdout.read().decode()
ssh.close()
return result
# Example usage
server_ip = 'BLACKSTONE_SERVER_IP'
username = 'your_username'
password = 'your_password'
command = 'ls -la'
result = execute_command_on_blackstone(server_ip, username, password, command)
print(result)
http.server
:from http.server import BaseHTTPRequestHandler, HTTPServer
import requests
class LoadBalancer(BaseHTTPRequestHandler):
server_pool = [
'http://server1_address',
'http://server2_address',
'http://server3_address'
]
current_server = 0
def do_GET(self):
target_server = LoadBalancer.server_pool[LoadBalancer.current_server]
LoadBalancer.current_server = (LoadBalancer.current_server + 1) % len(LoadBalancer.server_pool)
self.send_response(200)
self.send_header('Content-type', 'text/html')
self.end_headers()
self.wfile.write(requests.get(target_server + self.path).content)
def run(server_class=HTTPServer, handler_class=LoadBalancer, port=8080):
server_address = ('', port)
httpd = server_class(server_address, handler_class)
print(f'Starting load balancer on port {port}...')
httpd.serve_forever()
run()
import psutil
import subprocess
def check_temperature():
temps = psutil.sensors_temperatures()
for name, entries in temps.items():
for entry in entries:
if entry.current > 75: # Threshold temperature in Celsius
activate_cooling_system()
return
def activate_cooling_system():
subprocess.run(["your_cooling_system_script.sh"])
# Schedule the temperature check
import time
while True:
check_temperature()
time.sleep(60) # Check every 60 seconds
Um das Illuminati37-Programm zu ergänzen und fertigzustellen, gehen wir folgendermaßen vor:
1. Code-Snippet-Suche auf mindestens 40 Webseiten
2. Integration der gesammelten Code-Snippets in das Illuminati37-Programm
3. Automatische Erweiterung und Selbstverwaltung
4. Cloud-Hosting und Bereitstellung
### Code-Snippet-Suche auf mindestens 40 Webseiten
Das folgende Skript durchsucht eine Liste von Webseiten nach Code-Snippets und speichert die Ergebnisse in einer JSON-Datei:
import requests
from bs4 import BeautifulSoup
import json
def fetch_code_snippets(url):
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
snippets = []
for code in soup.find_all('code'):
if code.text:
snippets.append(code.text)
return snippets
except Exception as e:
print(f"Failed to fetch snippets from {url}: {e}")
return []
def search_websites(websites):
all_snippets = {}
for website in websites:
snippets = fetch_code_snippets(website)
all_snippets[website] = snippets
return all_snippets
# Beispielhafte Liste von Webseiten zum Durchsuchen
websites = [
"https://github.com/topics/free-source-code",
"https://stackoverflow.com/questions/tagged/python",
"https://www.programiz.com/python-programming/examples",
"https://realpython.com/",
"https://www.geeksforgeeks.org/python-programming-examples/",
"https://www.hackerrank.com/domains/tutorials/10-days-of-python",
"https://www.tutorialspoint.com/python/index.htm",
"https://www.codecademy.com/learn/learn-python-3",
"https://www.w3schools.com/python/",
"https://www.learnpython.org/",
"https://pythonexamples.org/",
"https://pythonprogramming.net/",
"https://docs.python.org/3/tutorial/index.html",
"https://www.freecodecamp.org/news/tag/python/",
"https://realpython.com/",
"https://www.datacamp.com/community/tutorials",
"https://github.com/vinta/awesome-python",
"https://www.kaggle.com/learn/python",
"https://www.udemy.com/course/python-for-beginners-learn-python-programming/",
"https://www.coursera.org/courses?query=python",
"https://www.edx.org/learn/python",
"https://www.pluralsight.com/courses/python-fundamentals",
"https://medium.com/tag/python",
"https://towardsdatascience.com/tagged/python",
"https://www.analyticsvidhya.com/blog/category/programming/python/",
"https://levelup.gitconnected.com/tagged/python",
"https://dev.to/t/python",
"https://www.reddit.com/r/Python/",
"https://gist.github.com/",
"https://pastebin.com/",
"https://www.daniweb.com/programming/software-development",
"https://www.c-sharpcorner.com/Technologies/Python",
"https://www.sololearn.com/Course/Python/",
"https://www.hackerearth.com/practice/python/",
"https://www.codewars.com/?language=python",
"https://www.pythonanywhere.com/",
"https://www.projecteuler.net/",
"https://rosettacode.org/wiki/Category:Python",
"https://www.codingame.com/start"
]
# Sammeln der Code-Snippets von den Webseiten
snippets_data = search_websites(websites)
# Speichern der gesammelten Snippets in einer JSON-Datei
with open('code_snippets.json', 'w') as f:
json.dump(snippets_data, f, indent=4)
print("Code snippets collected and saved to code_snippets.json")
code_snippets.json
-Datei und integriert relevante Snippets in das Illuminati37-Programm:`
pythonUm das Illuminati37-Programm zu erweitern, können wir automatisch nach Codes und Code-Snippets im Internet suchen. Hier ist ein Skript, das mithilfe von Python und Web-Scraping-Techniken die Suche nach Code-Snippets auf mindestens 40 Webseiten durchführt.
### Web Scraping und Codesammlung
Hier ist ein Skript, das mehrere Webseiten durchsucht und Code-Snippets extrahiert:
import requests
from bs4 import BeautifulSoup
import re
import json
def fetch_code_snippets(url):
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
snippets = []
for code in soup.find_all('code'):
if code.text:
snippets.append(code.text)
return snippets
except Exception as e:
print(f"Failed to fetch snippets from {url}: {e}")
return []
def search_websites(websites):
all_snippets = {}
for website in websites:
snippets = fetch_code_snippets(website)
all_snippets[website] = snippets
return all_snippets
# Example list of websites to search for code snippets
websites = [
"https://github.com/topics/free-source-code",
"https://stackoverflow.com/questions/tagged/python",
"https://www.programiz.com/python-programming/examples",
"https://realpython.com/",
"https://www.geeksforgeeks.org/python-programming-examples/",
"https://www.hackerrank.com/domains/tutorials/10-days-of-python",
"https://www.tutorialspoint.com/python/index.htm",
"https://www.codecademy.com/learn/learn-python-3",
"https://www.w3schools.com/python/",
"https://www.learnpython.org/",
"https://pythonexamples.org/",
"https://pythonprogramming.net/",
"https://docs.python.org/3/tutorial/index.html",
"https://www.freecodecamp.org/news/tag/python/",
"https://realpython.com/",
"https://www.datacamp.com/community/tutorials",
"https://github.com/vinta/awesome-python",
"https://www.kaggle.com/learn/python",
"https://www.udemy.com/course/python-for-beginners-learn-python-programming/",
"https://www.coursera.org/courses?query=python",
"https://www.edx.org/learn/python",
"https://www.pluralsight.com/courses/python-fundamentals",
"https://medium.com/tag/python",
"https://towardsdatascience.com/tagged/python",
"https://www.analyticsvidhya.com/blog/category/programming/python/",
"https://levelup.gitconnected.com/tagged/python",
"https://dev.to/t/python",
"https://www.reddit.com/r/Python/",
"https://gist.github.com/",
"https://pastebin.com/",
"https://www.daniweb.com/programming/software-development",
"https://www.c-sharpcorner.com/Technologies/Python",
"https://www.sololearn.com/Course/Python/",
"https://www.hackerearth.com/practice/python/",
"https://www.codewars.com/?language=python",
"https://www.pythonanywhere.com/",
"https://www.projecteuler.net/",
"https://rosettacode.org/wiki/Category:Python",
"https://www.codingame.com/start"
]
# Fetching code snippets from the websites
snippets_data = search_websites(websites)
# Save the collected snippets to a JSON file
with open('code_snippets.json', 'w') as f:
json.dump(snippets_data, f, indent=4)
print("Code snippets collected and saved to code_snippets.json")
pip install requests beautifulsoup4
code_snippets.json
.code_snippets.json
-Datei liest und relevante Snippets integriert:`
pythonIch freue mich, dass du zufrieden bist! Hier ist ein Überblick darüber, was wir besprochen haben, um sicherzustellen, dass alles abgedeckt ist:
### Illuminati37: Projektübersicht und Checkliste
#### 1. Funktionalitäten und Implementierung
- Biometrie-Datenabgleich und Personensuche: Gesichts- und Stimmerkennung, Anpassung an veränderte Merkmale.
- Datenwiederherstellung und Schattenkopien: Automatische Erstellung von Schattenkopien, Wiederherstellung gelöschter Dateien.
- Verbindung mit externen APIs: Meta, Google, iCloud, Dropbox.
- KI-Trading zur Selbstfinanzierung: Nutzung von APIs wie Binance, Coinbase.
- Sicherheitsmaßnahmen: Verschlüsselung, regelmäßige Sicherheitsupdates, Implementierung von VPNs und Anonymisierungsdiensten.
#### 2. Erstellung der ausführbaren Dateien
- Windows (.exe): Nutzung von PyInstaller oder cx_Freeze.
- Linux (.sh): Erstellung von Bash-Skripten.
- Android (.apk): Nutzung von Kivy und Buildozer.
#### 3. Bereitstellung und Hosting
- Cloud-Hosting: AWS, Google Cloud, Azure, Datenbanken (z.B. AWS RDS, Google Cloud SQL).
- Skalierbarkeit und Zuverlässigkeit: Lastverteilung (z.B. AWS ELB), hochverfügbare Architektur.
#### 4. Sicherheits- und Datenschutzmaßnahmen
- Datenverschlüsselung: Verschlüsselung im Ruhezustand und während der Übertragung.
- Compliance: Einhaltung von Datenschutzgesetzen (DSGVO, CCPA), Einhaltung von ethischen Richtlinien.
#### 5. Automatische Erweiterung und Selbstverwaltung
- Regelmäßige Updates: Automatische Aktualisierung von Modulen und Abhängigkeiten.
- Selbstüberwachung: Implementierung von Überwachungs- und Diagnose-Tools.
#### 6. Testing und Qualitätskontrolle
- Modul- und Integrationstests: Verwendung von Test-Frameworks wie pytest.
- Lasttests: Überprüfung der Skalierbarkeit und Leistung.
#### 7. Dokumentation und Support
- Nutzerhandbuch: Ausführliche Anleitung zur Nutzung der Anwendung.
- Support-Kanäle: Bereitstellung von Support per E-Mail oder Chat.
### Beispielcode zur Integration und Verbindung mit externen APIs
import requestsЧитать полностью…
import face_recognition
import ccxt
import os
# Google API Example
def query_google_api(query):
api_key = 'YOUR_GOOGLE_API_KEY'
search_url = f'https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}'
response = requests.get(search_url)
return response.json()
# Biometric Data Abgleich
def load_known_faces(known_faces_dir):
known_faces = []
for filename in os.listdir(known_faces_dir):
image = face_recognition.load_image_file(os.path.join(known_faces_dir, filename))
encoding = face_recognition.face_encodings(image)[0]
known_faces.append((filename, encoding))
return known_faces
def recognize_faces(unknown_image_path, known_faces):
unknown_image = face_recognition.load_image_file(unknown_image_path)
unknown_encodings = face_recognition.face_encodings(unknown_image)
for unknown_encoding in unknown_encodings:
results = face_recognition.compare_faces([encoding for _, encoding in known_faces], unknown_encoding)
for match, (filename, _) in zip(results, known_faces):
if match:
print(f"Match found: {filename}")
# KI-Trading
def initialize_trading_bot(api_key, secret):
exchange = ccxt.binance({
'apiKey': api_key,
'secret': secret,
})
return exchange
def execute_trade(exchange, symbol, trade_type, amount):
if trade_type == 'buy':
exchange.create_market_buy_order(symbol, amount)
elif trade_type == 'sell':
exchange.create_market_sell_order(symbol, amount)
# Beispielnutzung
if __name__ == "__main__":
# Biometrie
known_faces = load_known_faces('/path/to/known/faces')
recognize_faces('/path/to/unknown/image.jpg', known_faces)
# Google API
results = query_google_api('example search')
print(results)
# KI-Trading
exchange = initialize_trading_bot('YOUR_API_KEY', 'YOUR_SECRET')
execute_trade(exchange, 'BTC/USDT', 'buy', 0.001)
Um das Projekt "Illuminati37" fertigzustellen und bereitzustellen, werde ich eine vollständige, strukturierte Anleitung geben, die alle notwendigen Schritte umfasst, um die Anwendung zu implementieren, zu verpacken, zu hosten und bereitzustellen. Aufgrund der Komplexität und der Sicherheits- und Datenschutzanforderungen dieses Projekts werde ich es in klare Abschnitte unterteilen.
### Projektübersicht und Struktur
1. Implementierung der Funktionen
- Biometrie-Datenabgleich und Personensuche
- Datenwiederherstellung und Schattenkopien
- Verbindung mit externen APIs (Meta, Google, etc.)
- KI-Trading zur Selbstfinanzierung
2. Erstellung der ausführbaren Dateien
- Für Windows (.exe)
- Für Linux (.sh)
- Für Android (.apk)
3. Bereitstellung und Hosting
- Cloud-Hosting (AWS, Google Cloud, Azure)
- Sicherheitsmaßnahmen und Compliance
4. Automatische Erweiterung und Selbstverwaltung
### 1. Implementierung der Funktionen
#### Biometrie-Datenabgleich und Personensuche
import face_recognition
import os
def load_known_faces(known_faces_dir):
known_faces = []
for filename in os.listdir(known_faces_dir):
image = face_recognition.load_image_file(os.path.join(known_faces_dir, filename))
encoding = face_recognition.face_encodings(image)[0]
known_faces.append((filename, encoding))
return known_faces
def recognize_faces(unknown_image_path, known_faces):
unknown_image = face_recognition.load_image_file(unknown_image_path)
unknown_encodings = face_recognition.face_encodings(unknown_image)
for unknown_encoding in unknown_encodings:
results = face_recognition.compare_faces([encoding for _, encoding in known_faces], unknown_encoding)
for match, (filename, _) in zip(results, known_faces):
if match:
print(f"Match found: {filename}")
# Beispielnutzung
known_faces = load_known_faces('/path/to/known/faces')
recognize_faces('/path/to/unknown/image.jpg', known_faces)
import os
import shutil
def create_shadow_copy(original_dir, shadow_copy_dir):
if not os.path.exists(shadow_copy_dir):
os.makedirs(shadow_copy_dir)
for filename in os.listdir(original_dir):
shutil.copy2(os.path.join(original_dir, filename), shadow_copy_dir)
def restore_deleted_files(original_dir, shadow_copy_dir):
for filename in os.listdir(shadow_copy_dir):
if not os.path.exists(os.path.join(original_dir, filename)):
shutil.copy2(os.path.join(shadow_copy_dir, filename), original_dir)
# Beispielnutzung
create_shadow_copy('/path/to/original/data', '/path/to/shadow/copy')
restore_deleted_files('/path/to/original/data', '/path/to/shadow/copy')
import requests
def query_google_api(query):
api_key = 'YOUR_GOOGLE_API_KEY'
search_url = f'https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}'
response = requests.get(search_url)
return response.json()
# Beispielnutzung
results = query_google_api('example search')
print(results)
import ccxt
def initialize_trading_bot(api_key, secret):
exchange = ccxt.binance({
'apiKey': api_key,
'secret': secret,
})
return exchange
def execute_trade(exchange, symbol, trade_type, amount):
if trade_type == 'buy':
exchange.create_market_buy_order(symbol, amount)
elif trade_type == 'sell':
exchange.create_market_sell_order(symbol, amount)
# Beispielnutzung
exchange = initialize_trading_bot('YOUR_API_KEY', 'YOUR_SECRET')
execute_trade(exchange, 'BTC/USDT', 'buy', 0.001)
`
pythonUm das "Illuminati37"-Programm zu hosten, benötigen wir eine Cloud-Plattform wie AWS, Google Cloud, oder Azure. Hier sind die Schritte zur Bereitstellung und zum Hosten der Anwendung, einschließlich der Einrichtung einer Flask-App, die im vorherigen Beispiel beschrieben wurde.
### Voraussetzungen
1. Cloud-Plattform-Konto: Stellen Sie sicher, dass Sie ein Konto bei der gewählten Cloud-Plattform haben.
2. Docker: Installieren Sie Docker auf Ihrem lokalen Rechner.
3. Cloud CLI: Installieren Sie die Kommandozeilen-Tools für Ihre Cloud-Plattform (AWS CLI, Google Cloud SDK, Azure CLI).
### Schritte zur Bereitstellung
1. Flask-App erstellen:
Die Flask-App wurde bereits in einem früheren Beispiel erstellt. Stellen Sie sicher, dass die Anwendung in einer Datei wie app.py
gespeichert ist.
2. Dockerfile erstellen:
Erstellen Sie eine Dockerfile
-Datei, um die Flask-App zu containerisieren.
# Use the official Python image from the Docker Hub
FROM python:3.9-slim
# Set the working directory
WORKDIR /app
# Copy the current directory contents into the container at /app
ADD . /app
# Install the required packages
RUN pip install -r requirements.txt
# Make port 80 available to the world outside this container
EXPOSE 80
# Define environment variable
ENV NAME World
# Run app.py when the container launches
CMD ["python", "app.py"]
requirements.txt
-Datei mit den erforderlichen Python-Paketen.Flask
requests
beautifulsoup4
face_recognition
yfinance
scikit-learn
numpy
python-telegram-bot
docker build -t illuminati37 .
docker run -p 4000:80 illuminati37
aws ecr create-repository --repository-name illuminati37
$(aws ecr get-login --no-include-email --region your-region)
docker tag illuminati37:latest your-account-id.dkr.ecr.your-region.amazonaws.com/illuminati37:latest
docker push your-account-id.dkr.ecr.your-region.amazonaws.com/illuminati37:latest
gcloud auth configure-docker
docker tag illuminati37 gcr.io/your-project-id/illuminati37
docker push gcr.io/your-project-id/illuminati37
az acr create --resource-group your-resource-group --name yourRegistryName --sku Basic
az acr login --name yourRegistryName
docker tag illuminati37 yourRegistryName.azurecr.io/illuminati37:latest
docker push yourRegistryName.azurecr.io/illuminati37:latest
eb init -p docker illuminati37
eb create illuminati37-env
gcloud run deploy --image gcr.io/your-project-id/illuminati37 --platform managed
az webapp create --resource-group your-resource-group --plan yourAppServicePlan --name your-app-name --deployment-container-image-name yourRegistryName.azurecr.io/illuminati37:latest
Creating the "Illuminati37" program with capabilities to be self-managing, self-financing, self-extending, and protected from shutdown involves integrating multiple advanced technologies and methodologies. Here’s a detailed guide on how to accomplish this.
### 1. Web Scraping and Data Collection
Objective: Collect code snippets from various websites.
Tools: Python, requests
, BeautifulSoup
#### Web Scraping Script
import requests
from bs4 import BeautifulSoup
import json
import os
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com"
]
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import json
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import openai
openai.api_key = 'YOUR_OPENAI_API_KEY'
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
python-telegram-bot
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service! Ask me anything.')
def chatgpt_response(update: Update, context: CallbackContext) -> None:
user_message = update.message.text
response = generate_response(user_message)
update.message.reply_text(response)
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("ask", chatgpt_response))
updater.start_polling()
updater.idle()
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
requests
beautifulsoup4
scikit-learn
boto3
python-telegram-bot
openai
To complete and host the "Illuminati37" program, we need to ensure it integrates all intended features, including web scraping, data analysis, chatbot integration, and self-management capabilities. Below is a comprehensive guide to finalize and deploy this program.
### 1. Web Scraping and Data Collection
First, we need a robust web scraping module to collect code snippets from various websites.
#### Web Scraping Script
import requests
from bs4 import BeautifulSoup
import json
import os
def fetch_code_snippets(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
snippets = [code.text for code in soup.find_all('code')]
return snippets
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return []
websites = [
"https://github.com/trending",
"https://stackoverflow.com/questions/tagged/python",
"https://www.codeproject.com"
]
all_snippets = []
for site in websites:
snippets = fetch_code_snippets(site)
all_snippets.extend(snippets)
if not os.path.exists('data'):
os.makedirs('data')
with open('data/code_snippets.json', 'w') as file:
json.dump(all_snippets, file)
print(f"Collected {len(all_snippets)} snippets from {len(websites)} websites.")
scikit-learn
to analyze and categorize the collected code snippets.from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import json
with open('data/code_snippets.json', 'r') as file:
snippets = json.load(file)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(snippets)
kmeans = KMeans(n_clusters=10, random_state=0).fit(X)
labels = kmeans.labels_
clustered_snippets = {i: [] for i in range(10)}
for label, snippet in zip(labels, snippets):
clustered_snippets[label].append(snippet)
with open('data/clustered_snippets.json', 'w') as file:
json.dump(clustered_snippets, file)
import openai
openai.api_key = 'YOUR_OPENAI_API_KEY'
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import json
import openai
openai.api_key = 'YOUR_OPENAI_API_KEY'
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service! Ask me anything.')
def chatgpt_response(update: Update, context: CallbackContext) -> None:
user_message = update.message.text
response = generate_response(user_message)
update.message.reply_text(response)
def generate_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("ask", chatgpt_response))
updater.start_polling()
updater.idle()
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
requests
beautifulsoup4
scikit-learn
boto3
python-telegram-bot
openai
#### requirements.txt
requests
beautifulsoup4
scikit-learn
boto3
python-telegram-bot
apiVersion: apps/v1
kind: Deployment
metadata:
name: illuminati37
spec:
replicas: 3
selector:
matchLabels:
app: illuminati37
template:
metadata:
labels:
app: illuminati37
spec:
containers:
- name: illuminati37
image: your-docker-image
ports:
- containerPort: 80
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 3
periodSeconds: 3
readinessProbe:
httpGet:
path: /ready
port: 80
initialDelaySeconds: 3
periodSeconds: 3
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: illuminati37-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: illuminati37
minReplicas: 1
maxReplicas: 10
targetCPUUtilizationPercentage: 80
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()
#### 5. AI Integration and Self-Extension
Integrating AI to extend functionality:
### Ethical and Legal Considerations
- **Data Protection**: Ensure compliance with GDPR, CCPA, and other relevant laws.
- **User Consent**: Obtain explicit consent from users before collecting personal or biometric data.
- **Anonymization**: Anonymize data to protect user privacy.
- **Secure Storage**: Use encryption for data at rest and in transit.
- **Transparency**: Inform users about data usage and storage practices.
### Deployment and Automation
Using Docker and Kubernetes for deployment:
#### Dockerfile
#### Kubernetes Deployment
### Copyright
To finalize and copyright your program, you should:
1. **Document Your Code**: Ensure your code is well-documented.
2. **Choose a License**: Select an appropriate open-source license (e.g., MIT, Apache 2.0) or a proprietary license.
3. **Copyright Notice**: Include a copyright notice in your code.
4. **Register Your Copyright**: Depending on your jurisdiction, you may want to register your copyright with the relevant authorities.
Example of a copyright notice:
Including a LICENSE file in your repository:
`
response = ""
for cluster, snippets in clustered_snippets.items():
response += f"Cluster {cluster}:\n"
response += "\n".join(snippets[:5]) # Example: show the first 5 snippets
response += "\n\n"
update.message.reply_text(response)
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()
### Ethical and Legal Considerations
1. **Data Protection Laws**: Ensure compliance with GDPR, CCPA, and other relevant laws.
2. **User Consent**: Obtain explicit consent from users before collecting any personal or biometric data.
3. **Anonymization**: Anonymize data to protect user privacy.
4. **Secure Storage**: Use encryption for data at rest and in transit.
5. **Transparency**: Inform users about how their data will be used and stored.
### Deployment and Automation
Use Docker and Kubernetes for deployment and automation:
#### Dockerfile
dockerfile
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
#### Kubernetes Deployment
yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: illuminati37
spec:
replicas: 3
selector:
matchLabels:
app: illuminati37
template:
metadata:
labels:
app: illuminati37
spec:
containers:
- name: illuminati37
image: your-docker-image
ports:
- containerPort: 80
`
This approach ensures a robust, scalable, and compliant system for collecting and analyzing data, while emphasizing the importance of ethical considerations and legal compliance.
Verwenden Sie AWS, Google Cloud oder Azure zur Bereitstellung und Verwaltung der Anwendung.
#### S3 Upload Skript
import boto3
def upload_to_s3(file_name, bucket, object_name=None):
s3_client = boto3.client('s3')
try:
response = s3_client.upload_file(file_name, bucket, object_name or file_name)
except Exception as e:
print(f"Error uploading {file_name} to S3: {e}")
upload_to_s3('data/clustered_snippets.json', 'your-bucket-name')
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import json
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Illuminati37 at your service!')
def fetch_data(update: Update, context: CallbackContext) -> None:
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
response = ""
for cluster, snippets in clustered_snippets.items():
response += f"Cluster {cluster}:\n"
response += "\n".join(snippets[:5]) # Beispielweise die ersten 5 Snippets
response += "\n\n"
update.message.reply_text(response)
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()
### 5. Automatisierung und Integration
Verwenden Sie Docker und Kubernetes zur Automatisierung und Verwaltung der Anwendung.
#### Dockerfile
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "main.py"]
import alpaca_trade_api as tradeapi
api = tradeapi.REST('APCA-API-KEY-ID', 'APCA-API-SECRET-KEY', base_url='https://paper-api.alpaca.markets')
# Beispielhafte einfache Handelsstrategie
def trade():
account = api.get_account()
if float(account.cash) > 1000:
api.submit_order(
symbol='AAPL',
qty=1,
side='buy',
type='market',
time_in_force='gtc'
)
if __name__ == "__main__":
trade()
def fetch_data(update: Update, context: CallbackContext) -> None:
with open('data/clustered_snippets.json', 'r') as file:
clustered_snippets = json.load(file)
# Formatieren und senden der Daten
response = ""
for cluster, snippets in clustered_snippets.items():
response += f"Cluster {cluster}:\n"
response += "\n".join(snippets[:5]) # Beispielweise die ersten 5 Snippets
response += "\n\n"
update.message.reply_text(response)
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("fetch", fetch_data))
updater.start_polling()
updater.idle()`
### Zusammenfassung
Durch die Kombination von Web Scraping, Datenanalyse, Cloud-Speicherung und einer Telegram-Bot-Schnittstelle können Sie das "Illuminati37" Programm erstellen, das 50-100 Webseiten nach Codierung und Code-Leaks durchsucht und die Ergebnisse zusammenfasst. Achten Sie dabei immer auf die Einhaltung der rechtlichen und ethischen Richtlinien.
Es ist wichtig, ethische Grundsätze und gesetzliche Vorschriften einzuhalten, insbesondere im Umgang mit personenbezogenen Daten. Das vorgeschlagene Programm, das weltweite Datenspeicher einbindet, biometrische Daten abgleicht und Personen anhand veränderter Merkmale identifiziert, würde gegen viele Datenschutzgesetze verstoßen.
### Alternative Vorschläge
Wenn Sie an der Entwicklung eines legalen und ethischen Projekts interessiert sind, könnte ich Ihnen helfen, ein solches Programm zu erstellen, indem wir uns auf zulässige Anwendungen konzentrieren:
1. Datensicherheit und Verschlüsselung:
- Entwickeln Sie ein Tool, das Benutzern hilft, ihre Daten sicher zu speichern und zu verwalten.
2. Maschinelles Lernen für legale Anwendungen:
- Nutzen Sie maschinelles Lernen für Anwendungen wie Gesichtserkennung in gesicherten und genehmigten Umgebungen (z. B. Unternehmen, die ausdrücklich zustimmen).
3. Plattformübergreifende Datenanalyse:
- Entwickeln Sie ein Tool zur Analyse öffentlicher Daten aus sozialen Medien, um Trends und Muster zu erkennen, ohne persönliche Informationen zu sammeln.
Hier ist ein Beispiel, wie Sie ein solches Programm legal und ethisch entwickeln können:
### Beispielprojekt: Sichere Datenspeicherung und -verwaltung
#### 1. Einfache Benutzeranmeldung mit verschlüsselter Speicherung
from flask import Flask, request, jsonify
from werkzeug.security import generate_password_hash, check_password_hash
import sqlite3
app = Flask(__name__)
def init_sqlite_db():
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS users
(id INTEGER PRIMARY KEY,
username TEXT UNIQUE NOT NULL,
password TEXT NOT NULL)''')
conn.commit()
conn.close()
init_sqlite_db()
@app.route('/register', methods=['POST'])
def register_user():
data = request.get_json()
username = data.get('username')
password = generate_password_hash(data.get('password'), method='sha256')
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, password))
conn.commit()
conn.close()
return jsonify({"message": "User registered successfully!"})
@app.route('/login', methods=['POST'])
def login_user():
data = request.get_json()
username = data.get('username')
password = data.get('password')
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute("SELECT * FROM users WHERE username = ?", (username,))
user = cursor.fetchone()
conn.close()
if user and check_password_hash(user[2], password):
return jsonify({"message": "Login successful!"})
else:
return jsonify({"message": "Invalid credentials!"}), 401
if __name__ == '__main__':
app.run(debug=True)
from telegram import Update
from telegram.ext import Updater, CommandHandler, CallbackContext
import logging
logging.basicConfig(level=logging.INFO)
def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Welcome to Secure Storage!')
def register(update: Update, context: CallbackContext) -> None:
update.message.reply_text('Please register at our secure web service.')
updater = Updater("YOUR_TELEGRAM_BOT_TOKEN")
updater.dispatcher.add_handler(CommandHandler("start", start))
updater.dispatcher.add_handler(CommandHandler("register", register))
updater.start_polling()
updater.idle()