opendatascience | Technologies

Telegram-канал opendatascience - Data Science by ODS.ai 🦜

50999

First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp

Subscribe to a channel

Data Science by ODS.ai 🦜

⚡️ Biggest open text dataset release of the year: SmolTalk is a 1M sample big synthetic dataset that was used to train SmolLM v2.

TL;DR;
🧩 New datasets: Smol-Magpie-Ultra (400K) for instruction tuning; Smol-contraints (36K) for precise output; Smol-rewrite (50K) & Smol-summarize (100K) for rewriting and summarization.
🤝 Public Dataset Integrations: OpenHermes2.5 (100K), MetaMathQA & NuminaMath-CoT, Self-Oss-Starcoder2-Instruct, LongAlign & SystemChats2.0
🥇 Outperforms the new Orca-AgenInstruct 1M when trained with 1.7B and 7B models
🏆 Outperform models trained on OpenHermes and Magpie Pro on IFEval and MT-Bench
distilabel to generate all new synthetic datasets
🤗 Released under Apache 2.0 on huggingface

Apache 2.0

Synthetic generation pipelines and training code released.

Dataset: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
Generation Code: https://github.com/huggingface/smollm
Training Code: https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ DeepSeek-R1-Lite-Preview is now live: unleashing supercharged reasoning power!

🔍 o1-preview-level performance on AIME & MATH benchmarks.
💡 Transparent thought process in real-time.
🛠️ Open-source models & API coming soon!

🌐 You can try it now: http://chat.deepseek.com

#DeepSeek #llm

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

🔥 Speech to Speech model - Fish Agent v0.1 3B by FishAudio

> Trained on 700K hours of multilingual audio
> Continue-pretrained version of Qwen-2.5-3B-Instruct for 200B audio & text tokens
> Zero-shot voice cloning
> Text + audio input/ Audio output
> Ultra-fast inference w/ 200ms TTFA

> Models on the Hub & Finetuning code on its way! 🚀

https://huggingface.co/fishaudio/fish-agent-v0.1-3b

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! 🔥

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp ⚡

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second).
> CTC forced alignment for word-to-audio token mapping.
> Structured prompt creation w/ transcription, duration, audio tokens.

https://huggingface.co/OuteAI/OuteTTS-0.1-350M

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Ms - SmolLM2 1.7B - beats Qwen 2.5 1.5B & Llama 3.21B, Apache 2.0 licensed, trained on 11 Trillion tokens 🔥

> 135M, 360M, 1.7B parameter model
> Trained on FineWeb-Edu, DCLM, The Stack, along w/ new mathematics and coding datasets
> Specialises in Text rewriting, Summarization & Function Calling
> Integrated with transformers & model on the hub!

You can run the 1.7B in less than 2GB VRAM on a Q4 👑

Fine-tune, run inference, test, train, repeat - intelligence is just 5 lines of code away!

https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Питерский Data Halloween 2024 уже начался!

Трансляции можно смотреть сразу в 2 местах:
🎃Youtube
🧛‍♀️VK video

Читать полностью…

Data Science by ODS.ai 🦜

💡 SAM2Long, a training-free enhancement to SAM 2 for long-term video segmentation

- Less error accumulation facing occlusion/reappearance.
- A training-free memory tree for dynamic segmentation paths, boosting resilience efficiently.
- Significant improvements over SAM2 across 24 head-to-head comparisons on SA-V and LVOS.

🟡Technical Report: https://huggingface.co/papers/2410.16268
🟡Github: https://github.com/Mark12Ding/SAM2Long
🟡Homepage: https://mark12ding.github.io/project/SAM2Long/

#AIML #VideoSegmentation #SAM2Long #ComputerVision

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Minimalist Vision with Freeform Pixels

На ECCV-24 была секция, посвящённая низкоуровневому устройству систем компьютерного зрения. По настоящему low-level решение предложили в статье Minimalist Vision with Freeform Pixels, которая получила награду Best Paper Award. Авторы создали прототип полностью автономной по электропитанию камеры.

Вместо обычных матриц в камере используются 24 фотодиода. Перед каждым из них установлена маска-фильтр, которая выступает первым слоем нейросети. Оптическая передаточная функция маски зависит от задачи, под которую обучена камера.

По сути первый слой обеспечивает произвольную форму для каждого пикселя — против фиксированной квадратной у традиционных камер. А последующие слои выводят результат задачи. Так авторы демонстрируют возможность мониторинга рабочего пространства и оценки дорожного трафика при помощи всего лишь 8 пикселей из 24.

Кроме того, камера хорошо показала себя в задаче оценки освещённости помещения. Используя те же 8 пикселей, она сумела определить, какие из источников света были включены в каждый конкретный момент. При этом ни один из источников не был виден камере напрямую — она собирала информацию исходя из состояния помещения.

Помимо низкого энергопотребления, такой подход позволяет обеспечивать конфиденциальность людей в кадре, так как записываемой оптической информации недостаточно для восстановления деталей изображения. Прототип камеры оснащён микроконтроллером с Bluetooth. А с четырёх сторон расположены солнечные панели для получения электроэнергии.

Разбор подготовила Алиса Родионова
CV Time

Читать полностью…

Data Science by ODS.ai 🦜

🌟 Branch-Train-MiX: метод получения MoE-модели

Метод Branch-Train-MiX создает MoE-модель из dense-модели. Суть заключается в том, чтобы взять несколько одинаковых LLM, параллельно обучить их на разных датасетах и агрегировать предсказания каждой модели во время инференса.

После обучения все модели предлагается слить в MoE, чтобы FNN каждой базовой модели стал экспертом в соответствующем слое, и добавить роутер.


🟡 Страница проекта
🟡 Разбор метода


@ai_machinelearning_big_data

#MoE #LLM

Читать полностью…

Data Science by ODS.ai 🦜

Вечерний митап для ML-инженеров в Белграде и онлайн

📅 17 октября в 18:00 собираемся в хабе «Сербская Роза», чтобы обсудить тренды, новые подходы, решения и вызовы индустрии в неформальной обстановке.

Спикеры и темы докладов:

🔸 Илья Ирхин, руководитель подразделения аналитики в Яндекс Еде. Подробно рассмотрит рекламу ресторанов в сервисе: аукцион, ранжирование, ценообразование

🔸 Дмитрий Солодуха, руководитель группы в Алисе и Умных устройствах Яндекса. Покажет, как мы учим Алису откликаться без имени

🔸 Антон Клочков, руководитель подгруппы распознавания текста в VLM в Яндекс Поиске. Расскажет о развитии навыков распознавания текста в VLM

🔸 Пётр Вытовтов, руководитель группы в Яндекс Погоде. Рассмотрит трансформеры сервиса и расскажет, как начать прогнозировать до миллиметра осадков

После докладов офлайн-участников ждёт нетворкинг с экспертами из разных компаний!

📎 Регистрация и подробности тут.

Ждём вас на ML Party в Белграде!

Реклама. ООО "Яндекс", ИНН 7736207543.

Читать полностью…

Data Science by ODS.ai 🦜

Яндекс запустил VLM в Нейро

Visual Language Model теперь работает в Поиске по картинкам и Умной камере Яндекса. ML-разработчик компании описал детали на Хабре.

VLM представляет собой новую стадию развития компьютерного зрения, расширяя возможности анализа изображений. Модель способна анализировать детали и отвечать на сложные вопросы пользователей. VLM решает многие задачи «из коробки», что делает её гибким инструментом. При небольшом дообучении она может достигать качества state-of-the-art в различных задачах компьютерного зрения.

🛠 Архитектура: LLM + картиночный энкодер + адаптер. В новом пайплайне VLM-рефразер и VLM-captioner

Подробности процесса создания и сравнение со старым LLM-пайплайном в статье:

▪️ Хабр

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Нейроредактор Яндекс Браузера: ключевые особенности масштабного ИИ-проекта

Яндекс доработал возможности YandexGPT, превратив их в отдельный инструмент — нейроредактор. Теперь это не просто набор функций, а полноценный редактор, который создаёт тексты, исправляет ошибки и улучшает стиль, интегрированный прямо в Браузер.

Эксперименты разработчиков:
> Переход к архитектуре Encoder-Decoder, curriculum learning с постепенным усложнением примеров, предобучение на "грязном" датасете с искусственными ошибками. Эксперименты дали ускорение в 2 раза без потери качества, стабилизировали поведение на длинных текстах и в среднем обеспечили +10% качества на открытых датасетах.

К чему пришли:
>Надежная поддержка Маркдауна: раньше нейроредактатор некорректно обращался с разметкой, мог удалить или добавить спецсимволы, что делало результат непредсказуемым. Теперь, благодаря обучению на размеченных текстах, ручному восстановлению разметки и переобучению модели, достигнуто точное сохранение разметки 1:1 в процессе исправления ошибок.
>Новые возможности: перефразирование, упрощение/усложнение, перевод стиля, свободный ввод указаний (кастомный промт). Последний приближает нейроредактор к диалоговым ИИ-системам, позволяя решать любую задачу преобразования текста, не выбивая из состояния потока.

▪️Хабр

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

This open-source RAG tool for chatting with your documents is Trending at Number-1 in Github from the past few days

🔍 Open-source RAG UI for document QA
🛠️ Supports local LLMs and API providers
📊 Hybrid RAG pipeline with full-text & vector retrieval
🖼️ Multi-modal QA with figures & tables support
📄 Advanced citations with in-browser PDF preview
🧠 Complex reasoning with question decomposition
⚙️ Configurable settings UI
🔧 Extensible Gradio-based architecture

Key features:

🌐 Host your own RAG web UI with multi-user login
🤖 Organize LLM & embedding models (local & API)
🔎 Hybrid retrieval + re-ranking for quality
📚 Multi-modal parsing and QA across documents
💡 Detailed citations with relevance scores
🧩 Question decomposition for complex queries
🎛️ Adjustable retrieval & generation settings
🔌 Customizable UI and indexing strategies

#rag #ml

Github

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

76-page survey paper on Prompting Techniques

Explores structured understanding and taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities.

📌 The paper focuses on discrete prefix prompts rather than cloze prompts, because prefix prompts are widely used with modern LLM architectures like decoder-only models. It excludes soft prompts and techniques using gradient-based updates.

📌 The paper identifies 58 text-based prompting techniques broken into 6 major categories:

1) In-Context Learning (ICL) - learning from exemplars/instructions in the prompt

2) Zero-Shot - prompting without exemplars

3) Thought Generation - prompting the LLM to articulate reasoning

4) Decomposition - breaking down complex problems

5) Ensembling - using multiple prompts and aggregating outputs

6) Self-Criticism - having the LLM critique its own outputs

📌 For ICL, it discusses key design decisions like exemplar quantity, ordering, label quality, format, and similarity that critically influence output quality. It also covers ICL techniques like K-Nearest Neighbor exemplar selection.

📌 Extends the taxonomy to multilingual prompts, discussing techniques like translate-first prompting and cross-lingual ICL. It also covers multimodal prompts spanning image, audio, video, segmentation, and 3D modalities.

📌 More complex techniques like agents that access external tools, code generation, and retrieval augmented generation are also taxonomized. Evaluation techniques using LLMs are discussed.

📌 Prompting issues like security (prompt hacking), overconfidence, biases, and ambiguity are highlighted. Two case studies - benchmarking techniques on MMLU and an entrapment detection prompt engineering exercise - are presented.

https://arxiv.org/abs/2406.06608

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

🔥Introducing MLR-Copilot: autonomous machine learning research with LLM agents, which

→ generate research ideas
→ implement experiments
→ execute implementation with human feedback

📑Paper https://arxiv.org/abs/2408.14033
🔨Code https://github.com/du-nlp-lab/MLR-Copilot
🤗Demo https://huggingface.co/spaces/du-lab/MLR-Copilot

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ SANA: Генерация изображений изображений высокого разрешения от Nvidia Labs.

Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.

Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:

🟢Deep Compression Autoencoder (DC-AE)
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.

🟢Linear Diffusion Transformer (Linear DiT)
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.

В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.

🟢Decoder-only Small LLM as Text Encoder
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.

Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.

Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".

Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.

Результаты тестирования Sana впечатляют:

🟠Sana-0.6B, работающая с изображениями 512x512, в 5 раз быстрее, чем PixArt-Σ, при этом показывает лучшие результаты по метрикам FID, Clip Score, GenEval и DPG-Bench.

🟠При разрешении 1024x1024 Sana-0.6B в 40 раз быстрее PixArt-Σ.

🟠Sana-0.6B превосходит по скорости Flux-12B в 39 раз при разрешении 1024x1024) и может быть запущена на ноутбуке с 16 GB VRAM, генерируя изображения 1024x1024 менее чем за секунду.


⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.


▶️ Установка и инференс c GradioUI:

# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth





🟡Страница проекта
🟡Коллекция моделей на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #SANA #NVIDIA

Читать полностью…

Data Science by ODS.ai 🦜

Nexusflow released Athene v2 72B - competetive with GPT4o & Llama 3.1 405B Chat, Code and Math 🔥

> Arena Hard: GPT4o (84.9) vs Athene v2 (77.9) vs L3.1 405B (69.3)

> Bigcode-Bench Hard: GPT4o (30.8) vs Athene v2 (31.4) vs L3.1 405B (26.4)

> MATH: GPT4o (76.6) vs Athene v2 (83) vs L3.1 405B (73.8)

> Models on the Hub along and work out of the box w/ Transformers 🤗

https://huggingface.co/Nexusflow/Athene-V2-Chat

They also release an Agent model: https://huggingface.co/Nexusflow/Athene-V2-Agent

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ Как использование нескольких пользовательских представлений (MUR) улучшает персонализацию в рекомендательных системах

В Google рассказали про схему итеративного взвешивания плотности (iterative density weighting scheme, IDW), которая помогает равномерно распределять интересы пользователя.

Она уменьшает влияние дисбалансированных данных и улучшает кластеризацию элементов, анализируя плотность предметов в пространстве представлений.

В подробном разборе статьи от ml-спецов Яндекса рассказали про устройство IDW и кратко привели результаты эксперимента.


🟡Разбор
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #tech

Читать полностью…

Data Science by ODS.ai 🦜

Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations

У нейросетевых рекомендательных систем есть одна большая проблема — они плохо масштабируются, в то время как в NLP и CV скейлинг по размеру нейросетевых энкодеров очень хороший. Выделяют несколько причин этого явления: гигантский нестационарный словарь айтемов, гетерогенная природа признаков, а также очень большой объем данных.

В сегодняшней статье авторы предлагают переформулировать задачу рекомендации в генеративной постановке. Для начала, они представляют данные в виде последовательности событий. Вещественные фичи (счетчики и проч.) выкидываются, из взаимодействий с айтемами формируется единая последовательность, и затем в нее добавляются события изменения статической информации, такие как смена локации или изменение любого другого контекста.

Архитектура для генерации кандидатов выглядит довольно стандартно и похожа на SASRec или Pinnerformer: представляем пользователя в виде последовательности событий (item, action), и в тех местах, где следующим событием идет положительное взаимодействие с айтемом, предсказываем, что это за айтем.

А вот для ранжирования новизна достаточно серьезная: чтобы сделать модель target-aware (см. Deep Interest Network от Alibaba), понадобилось сделать более хитрую последовательность, в которой чередуются токены айтемов и действий: item_1, action_1, item_2, action_2, …. Из айтем-токенов предсказывается, какое с ними произойдет действие. Еще говорят, что на практике можно решать в этом месте любую многоголовую мультизадачу. Важно отметить, что авторы не учат единую модель сразу на генерацию кандидатов и ранжирование, а обучают две отдельные модели.

Другое нововведение — отказ от софтмакса и FFN в трансформере. Утверждается, что софтмакс плох для выучивания «интенсивности» чего-либо в истории пользователя. Те вещественные признаки, которые были выкинуты авторами, в основном её и касались. Например, сколько раз пользователь лайкал автора видеоролика, сколько раз скипал и т. д. Такие признаки очень важны для качества ранжирования. То, что отказ от софтмакса эту проблему решает, видно по результатам экспериментов — действительно есть значительное улучшение результатов ранжирования при такой модификации.

В итоге HSTU (Hierarchical Sequential Transduction Unit, так авторы окрестили свою архитектуру) показывает отличные результаты как на публичных, так и на внутренних датасетах. Еще и работает гораздо быстрее, чем прошлый DLRM подход за счет авторегрессивности и нового энкодера. Результаты в онлайне тоже очень хорошие — на billion-scale платформе short-form video (предполагаем, что это рилсы) получили +12.4% относительного прироста целевой метрики в A/B-тесте. Тем не менее, итоговая архитектура, которую авторы измеряют и внедряют, с точки зрения количества параметров не очень большая, где-то сотни миллионов. А вот по размеру датасета и длине истории скейлинг получился очень хороший.

@RecSysChannel
Разбор подготовил Кирилл Хрыльченко

Читать полностью…

Data Science by ODS.ai 🦜

🔥 Ежегодной премией Yandex ML Prize наградили 14 лауреатов за достижения в области машинного обучения

Победителями стали ученые и преподаватели, чьи исследования способствуют развитию науки в области ИИ и открывают новые возможности для практического применения ML-технологий в различных сферах. Премия, основанная для поддержки молодых исследователей, проводится уже шестой год.

Лауреаты в номинации «Исследования»:
🥇Александр Колесов, занимается разработкой нейросетевых методов на основе оптимального транспорта между вероятностными распределениями, одной из главных задач является построение барицентра Вассерштейна.
🏆 Алексей Скрынник, занимается исследованием и разработкой передовых алгоритмов Follower и MATS-LP, комбинирующих обучение с подкреплением и подходы поиска пути для задач децентрализованного многоагентного планирования.
🧠 Александр Тюрин, занимается задачами оптимизации, включающими сжатия информации и асинхронные вычисления.

https://tass.ru/obschestvo/22283467

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

Emergent Properties With Repeated Examples (by FAIR)

Что лучше, прогнать побольше данных за 1 эпоху или взять данных поменьше, но сделать больше эпох (повторений)? Очень актуальный вопрос, учитывая, что доступные текстовые данные скоро закончатся, и LLM по сути прочитают весь интернет. По разным оценкам, сейчас доступно ~90T токенов на английском языке, а для обучения llama-3 уже использовали 15Т — лимит не так уж и далеко.

Похоже, что для трансформеров повторения в обучающих данных могут быть даже полезнее, чем "бесконечное" количество разнообразных данных. Авторы этой статьи изучили как связано качество моделей на синтетических задачах (наибольший общий делитель, умножение по модулю, поиск с.з. матриц) с долей повторений в обучении при фиксированном компьюте. И оказалось, что повторения в датасете критически важны для обучения. Если нет повторений, то некоторые задачи вообще не решаются, сколько бы данных вы ни показывали! Повторения приводят к особому режиму обучения, без которого модель не всегда способна прийти к генерализации. Чем-то напоминает гроккинг, но на гораздо меньшем количестве шагов.

Скорее всего, этот эффект уже активно эксплуатируется при обучении LLM, ведь дублирующихся примеров там и так ооочень много, особенно в коде. Но зато теперь есть повод меньше переживать о дедупликации данных.

Кстати, очень похожий эффект я видел в статье про мультиязычность — там пришли к выводу, что для лучшей работы LLM на нескольких языках сразу, в обучении обязательно должно быть 90% примеров на "доминирующем" языке. Увеличение доли мультиязычных данных выше 10% сильно вредит этой самой мультиязычности.

Статья

Читать полностью…

Data Science by ODS.ai 🦜

⚡️Яндекс открыл доступ к более мощному семейству моделей YandexGPT 4

Pro-версия и облегчённая Lite-версия поддерживают более сложные запросы, расширенный контекст, скрытые рассуждения и работу с внешними инструментами. Модели уже доступны через API в Yandex Cloud.

🤖 Pro-версия превосходит предыдущее поколение в 70% случаев, а Lite не уступает лучшей модели прошлого поколения.
🤖 В четыре раза увеличено количество токенов (до 32 тысяч), которое нейросеть может обрабатывать в промте.
🤖 Улучшенная работа с RAG-сценариями и снижение доли галлюцинаций.
🤖 Внедрены скрытые рассуждения (Chain-of-thoughts) для пошагового анализа проблем, выделения этапов и поиска решений.

https://habr.com/ru/companies/yandex/articles/852968/

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

NVIDIA silently release a Llama 3.1 70B fine-tune that outperforms
GPT-4o and Claude Sonnet 3.5


Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface

🏆 85.0 on Arena Hard, 57.6 on AlpacaEval 2 LC, and 8.98 MT-Bench
🥇 Outperforms GPT-4o and Claude 3.5 Sonnet on these benchmarks
🍓 Can accurately answer "How many r's are in strawberry?"
🦙 Based on Llama-3.1-70B-Instruct and trained using RLHF (REINFORCE)
🧠 Released also Llama-3.1-Nemotron-70B-Reward #2 on RewardBench
🤗 Available on Hugging Face and NVIDIA

https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

✔️ LVD-2M: A Long-take Video Dataset with Temporally Dense Captions

New pipeline for selecting high-quality long-take videos and generating temporally dense captions.

Dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions.

🖥 Github: https://github.com/silentview/lvd-2m

📕 Paper: https://arxiv.org/abs/2410.10816v1

🖥 Dataset: https://paperswithcode.com/dataset/howto100m

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

🥪 TripoSR (MIT license) is now available on , free for individual use!

💳 For commercial use, you can generate around 350 - 3D objects for just $1 using runpod_io's serverless infrastructure. 🔥

🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ Most of the models from Mistral are now available for free via the API

What is this attraction of unprecedented generosity? Your queries will probably be used to train new models (although this is not accurate).

https://docs.mistral.ai/getting-started/models/

#mistral #opensource

@opendatascience

Читать полностью…

Data Science by ODS.ai 🦜

🌟 PuLID+FLUX: перенос внешности на генерации в FLUX .

PuLID (Pure and Lightning ID Customization) - метод генерации на основе внешности для диффузных моделей с управлением текстовым промптом. Ключевое преимущество PuLID состоит в его способности генерировать изображения с высокой степенью соответствия заданной личности, следуя заданным стилю и композиции.

PuLID для SD существует относительно давно и неплохо работал с моделями SDXL. Теперь этот метод стал доступен для FLUX-dev:

🟢ID-кодер перенесен из структуры MLP в структуру Transformer;

🟢добавлены дополнительные блоки перекрестного внимания чередованием с DIT-блоками для взаимодействия между ID и DIT;

🟢SDXL-Lightning, который в оригинальном методе PuLID отвечал за первоначальную генерацию шума в латентном пространстве, в PuLID для FLUX опционален;

🟢добавлена поддержка fp8-версий FLUX для запуска на потребительских GPU;

🟢запуск bf16 на RTX 3090-4090 возможен с параметром --aggressive_offload, но генерация будет выполняться очень, очень, очень медленно.

В PuLID for FLUX есть два критически важных гиперпараметра:

timestep to start inserting ID. Этот параметр управляет там, в какой момент ID (лицо с входного изображения) будет вставлен в DIT (значение 0 - ID будет вставляться с первого шага). Градация: чем меньше значение - тем более похожим на исходный портрет будет результат. Рекомендованное значение для фотореализма - 4.

true CFG scale. Параметр, модулирующий CFG-значение. Исходный процесс CFG метода PuLID, который требовал удвоенного количества этапов вывода, преобразован в шкалу управления чтобы имитировать истинный процесс CFG с половиной шагов инференса.

Для возможности гибкой настройки результатов, разработчик оставил оба гиперпараметра : CFG FLUX и true CFG scale. Фотореализм получается лучше с применением true CFG scale, но если финальное сходство внешности с оригиналом не устраивает - вы можете перейти на обычный CFG.

Запуск возможен несколькими способами: GradioUI, Google Collab (free tier), Google Collab (pro tier) или с одним из имплементаций для среды ComfyUI:

🟠собственная реализация сообщества ComfyUI;
🟠diffusers-based implementation.

⚠️ Важно!

🟢проект находится в бета-версии, точность ID может быть невысокой для некоторых мужcких лиц, возможно, модель нуждается в дополнительном обучении;

🟢для FLUX-FP8 версия Pytorch >= 2.0, для остальных >=2.4.1

▶️Установка и запуск GradioUI:

# clone PuLID repo
git clone https://github.com/ToTheBeginning/PuLID.git
cd PuLID

# create conda env
conda create --name pulid python=3.10

# activate env
conda activate pulid

# Install dependent packages
# 1. For SDXL or Flux-bf16, install the following
pip install -r requirements.txt

# 2. For Flux-fp8, install this
pip install -r requirements_fp8.txt

# Run Gradio UI
python app.py


📌Лицензирование : Apache 2.0 License.


🟡Arxiv
🟡Demo
🟡Google Collab
🖥Github


@ai_machinelearning_big_data

#AI #ML #FLUX #GenAI #PuLID

Читать полностью…

Data Science by ODS.ai 🦜

Курсы от Центрального университета для тех, кто уже многое видел в ML, DL и ИИ для углубленной прокачки навыков!

Университет открыл курсы дополнительного образования с интенсивной программой уровня второго курса магистратуры и большим количеством практики. Обучение проходит по вечерам или по субботам, занятия можно посещать как оффлайн в московском кампусе, так и онлайн.
Выбирайте от одного до четырех курсов из списка:
– Рекомендательные системы;
– компьютерное зрение;
– обработка естественного языка;
– прогнозирование временных рядов.
Подробнее о курсах и университете здесь.

Реклама, АНО ВО «Центральный университет», ИНН 7743418023

Читать полностью…

Data Science by ODS.ai 🦜

Законы масштабирования в больших моделях последовательных рекомендаций

Авторы из WeChat и Tencent разбирались, работают ли законы масштабирования нейросетей для рекомендательных систем. Главный вопрос — есть ли улучшение качества рекомендаций при увеличении количества обучаемых параметров? Короткий ответ — да.

Известно, что рост количества параметров моделей иногда коррелирует с улучшением качества решаемых задач. Больше всего работ посвящено законам масштабирования в языковых моделях. В них определяется эмпирическая зависимость функции потерь на отложенной выборке от характеристик обучения. Обычно рассматривают параметры энкодеров и/или декодеров. Для NLP зависимость в логарифмических координатах получается линейной.

В работе об SR авторы масштабировали декодер трансформера и вносили изменения в стратегии обучения, чтобы получить закон масштабирования для рекомендательных систем:
— Для слоёв в начале последовательности декодер-блоков применяли больший dropout-rate, а для слоёв на вершине — меньший, что позволило избежать оверфита.
— Сначала обучались с Adam до полной сходимости, а потом брали чекпоинты, с которых продолжали обучение при помощи SGD, потому что несмотря на лучшую сходимость, итоговый минимум у Adam получался хуже.

Историю взаимодействий форматировали как хронологическую последовательность ID айтемов. То есть задача решалась так же, как в случае с языковыми моделями. Исследователи не брали другую информацию (например, текст айтема), так как хотели изучить работу закона с т. з. поведения пользователя. Модели увеличивали до 0,8B параметров, сравнивая эффекты в разных диапазонах размеров.

Оказалось, закон масштабирования работает для SR-моделей даже в сценариях с ограниченным количеством данных. Авторы показали преимущество больших моделей и на сложных задачах рекомендаций: cold start, long tail, определяли траектории пользователей и смотрели, что происходит при мультидоменном трансфере — во всех случаях масштабирование улучшало результаты.

@RecSysChannel
Разбор подготовил Артем Матвеев

Читать полностью…

Data Science by ODS.ai 🦜

🌟 Microsoft Research AutoGen Studio: Low-Code интерфейс для быстрого прототипирования агентов LLM.

Microsoft Research обновил AutoGen Studio — Low-Code инструмент для разработчиков , предназначенный для создания, отладки и оценки многоагентных рабочих процессов.
AutoGen Studio разработан для повышения доступности среды управления локальным AI, позволяя разработчикам прототипировать и внедрять многоагентные системы без необходимости обширных знаний в области ML.

AutoGen Studio это веб-интерфейс и API Python. Он гибкий в использовании и его легко можно интегрировать его в различные среды разработки. Простой и понятный дизайн позволяет быстро собирать многоагентные системы с помощью удобного интерфейса drag-n-drop.

AutoGen Studio поддерживает API всех популярных онлайн-провейдеров LLM (OpenAI, Antрropic, Gemini, Groq, Amazon Bedrock, Corehe, MistralAI, TogetherAI ) и локальные бэкэнды :
vLLM, Ollama, LM Studio.

Возможности :

🟢Создание / настройка агентов (пока поддерживаются 2 рабочих процесса агентов на основе UserProxyAgent и AssistantAgent), изменение их конфигурации (например, навыки, температура, модель, системные сообщения агента, модель и т.д.) и объединение их в рабочие процессы;

🟢Чат с агентами по рабочим процессам и определение для них задач;

🟢Просмотр сообщений агента и выходных файлов в пользовательском интерфейсе после запуска агента;

🟢Поддержка сложных рабочих процессов агентов (например, групповой чат и последовательные рабочие процессы);

🟢Улучшение качества работы пользователей (например, потоковая передача промежуточных ответов LLM, лучшее обобщение ответов агентов и т. д.);

🟢AutoGen Studio использует SQLModel (Pydantic + SQLAlchemy). Это обеспечивает связь между сущностями (навыки, модели, агенты и рабочие процессы связаны через таблицы ассоциаций) и поддерживает несколько диалектов бэкенда базы данных, которые есть в SQLAlchemy (SQLite, PostgreSQL, MySQL, Oracle, Microsoft SQL Server).

Roadmap для отслеживания новых функций, решенных проблем и запросов от сообщества разработчиков можно найти в Issues репозитория AutoGen Studio на Github.

⚠️ Примечания от разработчика:

🟠AutoGen Studio не предназначен для использования в качестве готового к продакшену приложения. Это среда прототипирования и разработки процессов и агентов.
🟠AutoGen Studio находится в стадии активной разработки с частыми итерациями коммитов. Документация проекта обновляется синхронно с кодом.
🟠Системные требования к установке: Python 3.10+ и Node.js => 14.15.0.



📌Лицензирование : CC-BY-NC-SA-4.0 License & MIT License


🟡Страница проекта
🟡Документация
🟡Arxiv
🟡Сообщество в Discord
🖥Github [ Stars: 30.2K | Issues: 493 | Forks: 4.4K]


@ai_machinelearning_big_data

#AI #AgentsWorkflow #MLTool #Microsoft #LLM

Читать полностью…
Subscribe to a channel