2341
Все о пайтон, новости, подборки на русском и английском.
Как использовать pyproject.toml в Python
Рассматриваются основные аспекты работы с этим файлом, его структура и как он помогает в управлении зависимостями, настройке инструментов и организации проектов.
Краткий обзор:
- pyproject.toml появился в PEP 518 и стал стандартом для описания конфигурации Python-проектов.
- Позволяет определять сборщики (build backends), такие как setuptools или poetry.
- Упрощает настройку инструментов вроде black, mypy и pytest.
- Дает возможность управлять зависимостями и версиями пакетов.
Использование pyproject.toml делает проекты более структурированными и гибкими, особенно при работе с различными инструментами и системами сборки.
https://realpython.com/python-pyproject-toml/
#python
👉 @python_real
Getters и Setters в Python — это мощный инструмент для управления доступом к атрибутам объекта.
В статье детально рассматривается, как их использовать для инкапсуляции данных и контроля за изменениями свойств объекта.
Основные моменты:
- Объяснение, почему в Python прямой доступ к атрибутам предпочтительнее, но геттеры и сеттеры остаются важными.
- Использование декоратора @property для создания свойства с геттером и сеттером.
- Примеры, как эти механизмы помогают улучшить читаемость и безопасность кода.
https://realpython.com/python-getter-setter/
#python
👉 @python_real
🔍 Открытое собеседование на Python-бекендера с разработчиком из Avito и Яндекс в четверг
14 августа (уже в четверг!) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
📂 Савва Демиденко, ТехЛид с опытом в Яндексе и Авито, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Савва будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Савве
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама.
О рекламодателе.
Async IO в Python: что это и как с этим работать
Асинхронное программирование в Python — это подход, позволяющий выполнять несколько операций одновременно, не блокируя основной поток выполнения. Это особенно полезно для задач ввода-вывода (I/O), таких как сетевые запросы, работа с файлами и базы данных.
Ключевые понятия
* Сопрограммы (coroutines) — функции, которые можно приостанавливать и возобновлять.
* Событийный цикл (event loop) — механизм, управляющий выполнением асинхронных задач.
* await — оператор, который приостанавливает выполнение до завершения асинхронной операции.
Пример кода:
import asyncio
async def main():
print("Начало")
await asyncio.sleep(1)
print("Конец")
asyncio.run(main())
asyncio, но есть и дополнительные библиотеки (например, aiohttp для асинхронных HTTP-запросов).
🔍Тестовое собеседование на Python-бекендера с разработчиком из Avito во вторник
17 июня(уже завтра!) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
📂 Даня, разработчик из Авито, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Даня будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Дане
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Java-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqxMSzZ4
Как найти абсолютное значение в Python
В Python для чисел, массивов и собственных объектов используется встроенная функция abs(). В этом кратком руководстве вы узнаете:
* Как реализовать абсолютную функцию вручную.
* Как работает abs() с разными типами данных.
* Как расширить abs() для NumPy, pandas и своих классов.
1. Самостоятельная реализация
def absolute_value(x):
return x if x >= 0 else -x
max:
def absolute_value(x):
return max(x, -x)
def absolute_value(x):
return (x**2) ** 0.5 # возвращает float
abs().abs()
abs(-5) # 5
abs(-5.2) # 5.2
z = 3 + 4j
abs(z) # 5.0
Fraction и Decimal тоже работает «из коробки»:
from fractions import Fraction
abs(Fraction(-3, 4)) # Fraction(3, 4)
from decimal import Decimal
abs(Decimal("-0.75")) # Decimal('0.75')
map:
temps = [1, -5, 3, -2]
[abs(x) for x in temps] # [1, 5, 3, 2]
list(map(abs, temps)) # [1, 5, 3, 2]
import numpy as np
arr = np.array([-1, -4, 0, 7])
abs(arr) # array([1, 4, 0, 7])
import pandas as pd
data = pd.Series([-2, 5, -3])
abs(data) # Series([2, 5, 3])
abs() работал для объектов вашего класса, определите метод .__abs__():
import math
class Vector:
def __init__(self, *coords):
self.coords = coords
def __abs__(self):
return math.hypot(*self.coords)
v = Vector(3, 4)
abs(v) # 5.0
abs() – оптимальный выбор.map или генератор списка.abs() прямо на массивах и DataFrame..__abs__().
🚀 Открой для себя идеальный путь к лидерству с карьерным тестом от ОЭЗ «Алабуга»! 🌟
Мечтаете о карьере в крупной компании, где ваш потенциал раскроется на полную? Наш тест поможет вам определить вашу уникальную лидерскую роль. Может быть, именно вы станете тем лидером, который выведет команду на новый уровень?
После прохождения теста вы можете заполнить заявку и получить приглашение на эксклюзивную лидерскую программу. Участие в программе открывает реальные перспективы трудоустройства в ОЭЗ «Алабуга», предоставляя шанс начать путь к профессиональному признанию.
Сделайте первый шаг к своему будущему сегодня! Пройдите тест, подайте заявку и начните строить свою карьеру вместе с нами. 🎯
🔍Тестовое собеседование на Middle Python-разработчика в четверг
22 мая(в четверг) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Собес проведет Вадим Пуштаев, ex. head of backend в 💙, автор канала @pythonetc, архитектор в европейской компании
Как это будет:
📂 Вадим будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Вадим будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Вадиму
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqwMMTcQ
🔍Тестовое собеседование на Middle Python-разработчика в четверг
15 мая(в четверг) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
📂 Даня, старший разработчик в Авито, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Даня будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Дане
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Java-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqwE7pMi
Генератор изображений кода на Python: делитесь кодом со стилем
Иногда вместо того, чтобы копировать и вставлять код, хочется поделиться красивым изображением с его фрагментом. Это особенно актуально для публикаций в соцсетях или документации. В этой статье рассматривается, как создать такой инструмент с помощью Python.
Вы узнаете:
* Как использовать библиотеку Pillow для создания изображений;
* Как применять Pygments для подсветки синтаксиса;
* Как объединить эти инструменты в удобный CLI-интерфейс.
Что такое Pygments?
Pygments — это популярный инструмент для подсветки синтаксиса. Он поддерживает множество языков программирования и умеет преобразовывать код в HTML, LaTeX, RTF и другие форматы.
Пример:
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import ImageFormatter
code = 'print("Hello, world!")'
with open("code.png", "wb") as f:
f.write(highlight(code, PythonLexer(), ImageFormatter()))
ImageFormatter можно настраивать:font_name);font_size);style);
formatter = ImageFormatter(
font_name="DejaVu Sans Mono",
font_size=14,
line_numbers=True,
style="monokai"
)
argparse:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("source", nargs="?", type=argparse.FileType("r"), default=sys.stdin)
args = parser.parse_args()
code = args.source.read()
🧠 Как копировать объекты в Python правильно?
📌 Статья объясняет разницу между поверхностным и глубоким копированием объектов в Python.
🔍 Основные моменты:
• = не копирует объект, а лишь создаёт новую ссылку на него.
• Поверхностное копирование (copy.copy()) создаёт новый объект, но вложенные объекты остаются общими.
• Глубокое копирование (copy.deepcopy()) рекурсивно копирует все вложенные объекты, обеспечивая полную независимость.
• Для пользовательских классов можно определить методы _copy_() и _deepcopy_() для контроля процесса копирования.
https://realpython.com/python-copy/
#python
👉 @python_real
🧼 Методы strip(), lstrip() и rstrip() в Python: удаление пробелов и символов
Работая с текстом в Python, часто нужно удалить лишние пробелы или символы с краёв строки. Именно для этого существуют методы strip(), lstrip() и rstrip().
Основы
text = " hello world "
print(text.strip()) # 'hello world'
print(text.lstrip()) # 'hello world '
print(text.rstrip()) # ' hello world'
text = ".,!?hello world!?.,"
print(text.strip(".,!?")) # 'hello world'
strip("abc") удалит все a, b и c, а не строку "abc".lstrip() или rstrip() соответственно.
Представляем DuckDB
Если вы работаете с анализом данных в Python, скорее всего, вы используете такие библиотеки, как Pandas, NumPy и SQL. Но если ваши наборы данных становятся слишком большими для оперативной памяти или вы хотите более эффективную обработку, стоит обратить внимание на DuckDB — встроенную колонко-ориентированную СУБД, идеально подходящую для аналитических задач.
DuckDB позволяет запускать SQL-запросы прямо в Python, работать с DataFrame, Parquet, CSV и другими источниками данных без необходимости в отдельном сервере БД. Он прост в установке, кроссплатформенный и совместим с Pandas.
Основные фишки DuckDB:
- SQL-интерфейс, работающий с Pandas DataFrame, Arrow, Parquet и др.
- Высокая производительность благодаря колонко-ориентированному движку.
- Поддержка сложных SQL-запросов, включая оконные функции и CTE.
- Отсутствие необходимости в сервере — всё работает локально и быстро.
Пример использования:
import duckdb
import pandas as pd
df = pd.read_csv("data.csv")
result = duckdb.query("SELECT column1, AVG(column2) FROM df GROUP BY column1").to_df()
result = duckdb.query("SELECT * FROM 'data.parquet' WHERE value > 100").to_df()
Методы экземпляра, класса и статические методы в Python — просто о сложном
В Python у нас есть три типа методов: экземпляра (instance methods), классовые (class methods) и статические (static methods). Все они определяются внутри класса, но различаются по тому, как они работают и как к ним обращаться.
🧩 Методы экземпляра
Это наиболее распространённый тип. Они автоматически получают первым аргументом ссылку на объект (self), через который можно обращаться к атрибутам и другим методам этого объекта.
class MyClass:
def instance_method(self):
print(f'Вызван instance_method: {self}')
obj = MyClass()
obj.instance_method()
cls). Это позволяет работать с атрибутами класса, а не отдельного объекта.
class MyClass:
@classmethod
def class_method(cls):
print(f'Вызван class_method: {cls}')
MyClass.class_method()
obj.class_method()
class Book:
def __init__(self, title, author):
self.title = title
self.author = author
@classmethod
def from_string(cls, book_str):
title, author = book_str.split(' - ')
return cls(title, author)
self, ни cls. Это просто функции, определённые в теле класса для логической организации, когда они имеют отношение к классу, но не используют его состояние.
class MyClass:
@staticmethod
def static_method():
print('Вызван static_method')
MyClass.static_method()
obj.static_method()
О векторных базах данных простым языком
Представьте, что управляете онлайн-магазином, предлагающим тысячи товаров.
Чтобы помочь пользователям находить нужные позиции, вы добавили строку поиска. Теперь посетители могут вводить интересующие их запросы, на что вы будете показывать им подходящие результаты.
Например, когда пользователь вводит «лето», вы можете показывать предметы вроде шортов, платьев, панам и пляжных зонтов.
Как бы вы реализовали такую систему?
https://getdeploying.com/guides/vector-databases
#python
👉 @python_real
🔍Тестовое собеседование на Middle Python в четверг с разработчиком из Авито
28 августа(в четверг) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
📂 Даня, старший разработчик в Авито, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Даня будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Дане
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Java-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама.
О рекламодателе.
📂 Как получить список всех файлов в директории на Python
Статья о том, как с помощью Python получать список файлов в директориях. Рассмотрены различные способы, включая использование модулей os, os.path, glob и более современного pathlib.
Особое внимание уделено:
- Фильтрации файлов по расширению.
- Рекурсивному поиску в подпапках.
- Преимуществам каждого подхода.
https://realpython.com/get-all-files-in-directory-python/
#python
👉 @python_real
Python Mixins: мощный инструмент для повторного использования кода
В Python Mixin — это особый вид класса, который используется для расширения функционала других классов без необходимости создавать сложные иерархии наследования. Mixin-классы сами по себе, как правило, не предназначены для самостоятельного использования — они лишь добавляют дополнительное поведение.
Основная идея Mixin
Mixin — это способ «влить» функциональность в класс, комбинируя его с другими классами через множественное наследование.
Например, если у нас есть класс LoggerMixin, он может добавлять возможность логирования в любой класс, который его наследует.
class LoggerMixin:
def log(self, message):
print(f"[LOG]: {message}")
class User(LoggerMixin):
def __init__(self, name):
self.name = name
user = User("Alice")
user.log("Пользователь создан") # [LOG]: Пользователь создан
Mixin в название.
import json
class ToJSONMixin:
def to_json(self):
return json.dumps(self.__dict__)
class Point(ToJSONMixin):
def __init__(self, x, y):
self.x = x
self.y = y
p = Point(4, 5)
print(p.to_json()) # {"x": 4, "y": 5}
Python 3.14. T-строки в Python: новый способ работы со строками?
Python предлагает множество способов создания строк — от обычных строк до f-строк и raw-строк. Но начиная с Python 3.12, появляется новый способ: t-строки. Это экспериментальный синтаксис, предлагаемый для улучшения интернационализации (i18n) строк.
В этом посте мы кратко рассмотрим:
🔘 Что такое t-строки?
🔘Зачем они нужны?
🔘Как их использовать?
Что такое t-строки?t"..." — это новый синтаксис строк, похожий на f-строки, но предназначенный для упрощения перевода строк. Они позволяют использовать интерполяцию переменных и одновременно автоматически отмечать строку как подлежащую переводу.
name = "Алиса"
print(t"Привет, {name}!")
from gettext import gettext as _
name = "Алиса"
print(_("Привет, {name}!").format(name=name))
gettext, где строки передаются в функцию _() и затем интерполируются вручную:
print(_("Привет, {name}!").format(name=name))
t-строки делают этот процесс более чистым и читаемым.t-строки являются экспериментальной функцией в Python 3.12, и для их использования нужно включить feature flag:
from __future__ import tstrings
from __future__ import tstrings
name = "Алиса"
print(t"Привет, {name}!")
gettext, но с более читаемым и лаконичным синтаксисом.
Определение собственной функции в Python
Функции — это фундаментальный строительный блок в Python. Они позволяют организовать код, переиспользовать его и сделать программу более читаемой. Создание собственной функции — это важный шаг на пути к более эффективной разработке.
Основы: def и имя функции
Функции в Python определяются с помощью ключевого слова def, за которым следует имя функции, круглые скобки (в которых можно указать параметры), и двоеточие:
def greet():
print("Привет!")
greet()
def greet(name):
print(f"Привет, {name}!")
greet("Oleg")
return можно вернуть результат из функции:
def add(a, b):
return a + b
result = add(3, 4)
print(result) # 7
def greet(name="друг"):
print(f"Привет, {name}!")
greet() # Привет, друг!
greet("Oleg") # Привет, Oleg!
def describe_pet(animal, name):
print(f"У меня есть {animal}, его зовут {name}.")
describe_pet(animal="кот", name="Барсик")
def get_point():
return (3, 4)
x, y = get_point()
🚀 Подборка Telegram каналов для программистов
Системное администрирование, DevOps 📌
/channel/bash_srv Bash Советы
/channel/win_sysadmin Системный Администратор Windows
/channel/sysadmin_girl Девочка Сисадмин
/channel/srv_admin_linux Админские угодья
/channel/linux_srv Типичный Сисадмин
/channel/devopslib Библиотека девопса | DevOps, SRE, Sysadmin
/channel/linux_odmin Linux: Системный администратор
/channel/devops_star DevOps Star (Звезда Девопса)
/channel/i_linux Системный администратор
/channel/linuxchmod Linux
/channel/sys_adminos Системный Администратор
/channel/tipsysdmin Типичный Сисадмин (фото железа, было/стало)
/channel/sysadminof Книги для админов, полезные материалы
/channel/i_odmin Все для системного администратора
/channel/i_odmin_book Библиотека Системного Администратора
/channel/i_odmin_chat Чат системных администраторов
/channel/i_DevOps DevOps: Пишем о Docker, Kubernetes и др.
/channel/sysadminoff Новости Линукс Linux
1C разработка 📌
/channel/odin1C_rus Cтатьи, курсы, советы, шаблоны кода 1С
/channel/DevLab1C 1С:Предприятие 8
/channel/razrab_1C 1C Разработчик
/channel/buh1C_prog 1C Программист | Бухгалтерия и Учёт
/channel/rabota1C_rus Вакансии для программистов 1С
Программирование C++📌
/channel/cpp_lib Библиотека C/C++ разработчика
/channel/cpp_knigi Книги для программистов C/C++
/channel/cpp_geek Учим C/C++ на примерах
Программирование Python 📌
/channel/pythonofff Python академия.
/channel/BookPython Библиотека Python разработчика
/channel/python_real Python подборки на русском и английском
/channel/python_360 Книги по Python
Java разработка 📌
/channel/BookJava Библиотека Java разработчика
/channel/java_360 Книги по Java Rus
/channel/java_geek Учим Java на примерах
GitHub Сообщество 📌
/channel/Githublib Интересное из GitHub
Базы данных (Data Base) 📌
/channel/database_info Все про базы данных
Мобильная разработка: iOS, Android 📌
/channel/developer_mobila Мобильная разработка
/channel/kotlin_lib Подборки полезного материала по Kotlin
Фронтенд разработка 📌
/channel/frontend_1 Подборки для frontend разработчиков
/channel/frontend_sovet Frontend советы, примеры и практика!
/channel/React_lib Подборки по React js и все что с ним связано
Разработка игр 📌
/channel/game_devv Все о разработке игр
Библиотеки 📌
/channel/book_for_dev Книги для программистов Rus
/channel/programmist_of Книги по программированию
/channel/proglb Библиотека программиста
/channel/bfbook Книги для программистов
БигДата, машинное обучение 📌
/channel/bigdata_1 Big Data, Machine Learning
Программирование 📌
/channel/bookflow Лекции, видеоуроки, доклады с IT конференций
/channel/rust_lib Полезный контент по программированию на Rust
/channel/golang_lib Библиотека Go (Golang) разработчика
/channel/itmozg Программисты, дизайнеры, новости из мира IT
/channel/php_lib Библиотека PHP программиста 👨🏼💻👩💻
/channel/nodejs_lib Подборки по Node js и все что с ним связано
/channel/ruby_lib Библиотека Ruby программиста
/channel/lifeproger Жизнь программиста. Авторский канал.
QA, тестирование 📌
/channel/testlab_qa Библиотека тестировщика
Шутки программистов 📌
/channel/itumor Шутки программистов
Защита, взлом, безопасность 📌
/channel/thehaking Канал о кибербезопасности
/channel/xakep_2 Хакер Free
Книги, статьи для дизайнеров 📌
/channel/ux_web Статьи, книги для дизайнеров
Математика 📌
/channel/Pomatematike Канал по математике
/channel/phis_mat Обучающие видео, книги по Физике и Математике
/channel/matgeoru Математика | Геометрия | Логика
Excel лайфхак📌
/channel/Excel_lifehack
/channel/mir_teh Мир технологий (Technology World)
Вакансии 📌
/channel/sysadmin_rabota Системный Администратор
/channel/progjob Вакансии в IT
Вложенные циклы в Python
Вложенные циклы позволяют размещать один цикл внутри другого и тем самым выполнять повторяющиеся действия над несколькими последовательностями. Понимание этой концепции помогает писать более эффективный код, управлять сложными структурами данных и избегать проблем с читабельностью и производительностью.
Начало работы с вложенными циклами
В Python есть два основных типа циклов — for и while.
* for -цикл проходит по элементам последовательности (списка, диапазона и т. д.), когда количество итераций известно заранее.
* while -цикл выполняется, пока истинно заданное условие, и полезен, когда число итераций заранее не определено.
Вложенный цикл создаётся размещением одного цикла внутри другого:
for outer_variable in outer_iterable:
for inner_variable in inner_iterable:
<body>
for hour in range(24):
for minute in range(60):
print(f"{hour:02d}:{minute:02d}")
height = 6
sail_patterns = "*#-x+o"
for row in range(height):
pattern = ""
spacing = " " * (height - row)
for symbol in sail_patterns:
pattern += symbol * row + spacing
print(pattern)
for multiplicant in range(1, 11):
for multiplier in range(1, 4):
expression = f"{multiplicant:>2d} × {multiplier}"
product = multiplicant * multiplier
print(f"{expression} = {product:>2d}", end="\t")
print()
resource_donators = [
[8, 6, 3],
[9, 2, 7],
[4, 1, 5]
]
total_resources = 0
for planet in resource_donators:
for resource in planet:
total_resources += resource
print(total_resources) # 45
players = ["Bonnie", "Mike", "Raj", "Adah"]
for player1 in players:
for player2 in players:
if player1 != player2:
print(f"{player1} vs {player2}")
while
while True:
word = input("Введите слово (exit — для выхода): ")
if word == "exit":
break
for letter in word:
print(letter)
O(n²) и выше).break и continue позволяют досрочно завершать цикл или пропускать ненужные итерации.
# Поиск "bacon" с break
for layer in blt_sandwich:
for ingredient in layer:
if ingredient == target:
print("Found bacon!")
break
if target in layer:
break
break, continue и list comprehension, и никогда не забывайте о сложности алгоритма.
📊 Группировка данных в Polars с помощью `groupby`
Polars — это высокопроизводительная библиотека для анализа данных на Python. Она особенно хороша при работе с большими объемами данных, благодаря своей колонко-ориентированной архитектуре и использованию Rust под капотом.
Одним из ключевых инструментов для агрегации и анализа данных является метод .groupby().
Основы .groupby()
Пример базовой группировки:
import polars as pl
df = pl.DataFrame({
"city": ["London", "London", "Oslo", "Oslo", "Berlin", "Berlin"],
"year": [2020, 2021, 2020, 2021, 2020, 2021],
"value": [100, 150, 200, 220, 50, 80],
})
result = df.groupby("city").agg([
pl.col("value").mean().alias("average_value")
])
print(result)
df.groupby(["city", "year"]).agg([
pl.col("value").sum().alias("total_value")
])
df.groupby("city").agg([
(pl.col("value") * 2).mean().alias("double_avg")
])
.groupby() в ленивом API
df_lazy = df.lazy()
result = df_lazy.groupby("city").agg([
pl.col("value").sum().alias("total")
])
.collect():
result.collect()
.groupby_dynamic() и .groupby_rolling()groupby_dynamic: для агрегирования по фиксированным временным интервалам (например, по дням, неделям).groupby_rolling: для скользящего окна (например, скользящее среднее за 7 дней).
df = pl.DataFrame({
"timestamp": pl.date_range(low=datetime(2022,1,1), high=datetime(2022,1,10), interval="1d"),
"value": range(10)
})
df.groupby_rolling(index_column="timestamp", period="3d").agg([
pl.col("value").mean().alias("rolling_avg")
])
Улучшаем логирование в Python с Loguru
Встроенный модуль logging в Python мощный, но довольно многословный и требует много шаблонного кода. Библиотека Loguru упрощает логирование, предлагая удобный и мощный API. Основные особенности и как начать использовать Loguru.
🔹Установка
pip install loguru
from loguru import logger
logger.debug("Отладочное сообщение")
logger.info("Информационное сообщение")
logger.success("Сообщение об успешной операции")
logger.warning("Предупреждение")
logger.error("Ошибка")
logger.critical("Критическая ошибка")
sys.stderr. Можно удалить его и добавить свой:
logger.remove()
logger.add("file.log", rotation="1 MB", compression="zip")
rotation — лог будет разбит на части при достижении 1 МБ,compression — старые логи будут архивироваться в zip.
logger.add("log.txt", format="{time} {level} {message}", level="INFO")
@logger.catch
def divide(a, b):
return a / b
divide(1, 0)
try/except.logging в Loguru:
import logging
from loguru import logger
class InterceptHandler(logging.Handler):
def emit(self, record):
logger_opt = logger.opt(depth=6, exception=record.exc_info)
logger_opt.log(record.levelname, record.getMessage())
logging.basicConfig(handlers=[InterceptHandler()], level=0)
logging, которая избавляет от шаблонного кода и делает логирование более выразительным и удобным. Особенно полезна для проектов, где читаемость и простота важны так же, как функциональность.
🔹 Что такое пространства имён в Python?
В Python пространство имён — это система, которая обеспечивает уникальные имена для всех объектов, таких как переменные и функции. Простыми словами, это своего рода словарь, в котором имена являются ключами, а объекты — значениями.
Существует несколько типов пространств имён:
- Локальные: существуют внутри функции.
- Глобальные: существуют на уровне модуля.
- Встроенные: предоставляются Python по умолчанию (например, len() и print()).
Python управляет этими пространствами имён с помощью LEGB-правила:
- Local — локальное пространство имён.
- Enclosing — пространство имён замыкающей функции.
- Global — глобальное пространство имён.
- Built-in — встроенное пространство имён.
Когда интерпретатор встречает имя, он ищет его именно в таком порядке.
Понимание пространств имён помогает избежать неожиданных ошибок и писать более чистый код!
https://realpython.com/python-namespace/
#python
👉 @python_real
🚀 Подпишись и прокачай свои скилы: лучшие каналы для IT-специалистов 👨💻📲
Папка с каналами для DevOps, Linux - Windows СисАдминов 👍
Папка с каналами для 1С программистов 🧑💻
Папка с каналами для C++ программистов 👩💻
Папка с каналами для Python программистов 👩💻
Папка с каналами для Java программистов 🖥
Папка с книгами для программистов 📚
Папка для программистов (frontend, backend, iOS, Android) 💻
GitHub Сообщество 🧑💻
/channel/Githublib Интересное из GitHub
Базы данных (Data Base) 🖥
/channel/database_info Все про базы данных
Разработка игр 📱
/channel/game_devv Все о разработке игр
БигДата, машинное обучение 🖥
/channel/bigdata_1 Data Science, Big Data, Machine Learning, Deep Learning
QA, тестирование 🖥
/channel/testlab_qa Библиотека тестировщика
Шутки программистов 📌
/channel/itumor Шутки программистов
Защита, взлом, безопасность 💻
/channel/thehaking Канал о кибербезопасности
/channel/xakep_2 Хакер Free
Книги, статьи для дизайнеров 🎨
/channel/ux_web Статьи, книги для дизайнеров
Математика 🧮
/channel/Pomatematike Канал по математике
/channel/phis_mat Обучающие видео, книги по Физике и Математике
Excel лайфхак🙃
/channel/Excel_lifehack
Технологии 🖥
/channel/tikon_1 Новости высоких технологий, науки и техники💡
/channel/mir_teh Мир технологий (Technology World)
Вакансии 💰
/channel/sysadmin_rabota Системный Администратор
/channel/progjob Вакансии в IT
/channel/rabota1C_rus Вакансии для программистов 1С
Подборка Telegram каналов для программистов
/channel/bash_srv Bash Советы
/channel/win_sysadmin Системный Администратор Windows
/channel/lifeproger Жизнь программиста. Авторский канал.
/channel/devopslib Библиотека девопса | DevOps, SRE, Sysadmin
/channel/rabota1C_rus Вакансии для программистов 1С
Системное администрирование 📌
/channel/sysadmin_girl Девочка Сисадмин
/channel/srv_admin_linux Админские угодья
/channel/linux_srv Типичный Сисадмин
/channel/linux_odmin Linux: Системный администратор
/channel/devops_star DevOps Star (Звезда Девопса)
/channel/i_linux Системный администратор
/channel/linuxchmod Linux
/channel/sys_adminos Системный Администратор
/channel/tipsysdmin Типичный Сисадмин (фото железа, было/стало)
/channel/sysadminof Книги для админов, полезные материалы
/channel/i_odmin Все для системного администратора
/channel/i_odmin_book Библиотека Системного Администратора
/channel/i_odmin_chat Чат системных администраторов
/channel/i_DevOps DevOps: Пишем о Docker, Kubernetes и др.
/channel/sysadminoff Новости Линукс Linux
1C разработка 📌
/channel/odin1C_rus Cтатьи, курсы, советы, шаблоны кода 1С
/channel/DevLab1C 1С:Предприятие 8
Программирование C++📌
/channel/cpp_lib Библиотека C/C++ разработчика
/channel/cpp_knigi Книги для программистов C/C++
/channel/cpp_geek Учим C/C++ на примерах
Программирование Python 📌
/channel/pythonofff Python академия. Учи Python быстро и легко🐍
/channel/BookPython Библиотека Python разработчика
/channel/python_real Python подборки на русском и английском
/channel/python_360 Книги по Python Rus
Java разработка 📌
/channel/BookJava Библиотека Java разработчика
/channel/java_360 Книги по Java Rus
/channel/java_geek Учим Java на примерах
GitHub Сообщество 📌
/channel/Githublib Интересное из GitHub
Базы данных (Data Base) 📌
/channel/database_info Все про базы данных
Мобильная разработка: iOS, Android 📌
/channel/developer_mobila Мобильная разработка
/channel/kotlin_lib Подборки полезного материала по Kotlin
Фронтенд разработка 📌
/channel/frontend_1 Подборки для frontend разработчиков
/channel/frontend_sovet Frontend советы, примеры и практика!
/channel/React_lib Подборки по React js и все что с ним связано
Разработка игр 📌
/channel/game_devv Все о разработке игр
Библиотеки 📌
/channel/book_for_dev Книги для программистов Rus
/channel/programmist_of Книги по программированию
/channel/proglb Библиотека программиста
/channel/bfbook Книги для программистов
/channel/books_reserv Книги для программистов
БигДата, машинное обучение 📌
/channel/bigdata_1 Data Science, Big Data, Machine Learning, Deep Learning
Программирование 📌
/channel/bookflow Лекции, видеоуроки, доклады с IT конференций
/channel/coddy_academy Полезные советы по программированию
/channel/rust_lib Полезный контент по программированию на Rust
/channel/golang_lib Библиотека Go (Golang) разработчика
/channel/itmozg Программисты, дизайнеры, новости из мира IT
/channel/php_lib Библиотека PHP программиста 👨🏼💻👩💻
/channel/nodejs_lib Подборки по Node js и все что с ним связано
/channel/ruby_lib Библиотека Ruby программиста
QA, тестирование 📌
/channel/testlab_qa Библиотека тестировщика
Шутки программистов 📌
/channel/itumor Шутки программистов
Защита, взлом, безопасность 📌
/channel/thehaking Канал о кибербезопасности
/channel/xakep_2 Хакер Free
Книги, статьи для дизайнеров 📌
/channel/ux_web Статьи, книги для дизайнеров
Математика 📌
/channel/Pomatematike Канал по математике
/channel/phis_mat Обучающие видео, книги по Физике и Математике
Excel лайфхак📌
/channel/Excel_lifehack
/channel/tikon_1 Новости высоких технологий, науки и техники💡
/channel/mir_teh Мир технологий (Technology World)
Вакансии 📌
/channel/sysadmin_rabota Системный Администратор
/channel/progjob Вакансии в IT
🔍Тестовое собеседование на Middle Бекенд Python-разработчика в четверг
27 марта(уже в четверг!) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
📂 Савва Демиденко, ТехЛид с опытом в Яндексе и Авито, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Савва будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Савве
Это бесплатно. Эфир проходит в рамках курса от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд и прокачать скиллы.
Все участники эфира получат бесплатный урок по System Design.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqvtqLrt
Три открытых урока для Python-разработчиков
Если уже освоили базовый Python и хотите прокачаться в веб-разработке — не пропустите бесплатные занятия от OTUS.
📺 Web-фреймворк на Python за час | 26 марта в 20:00 (Мск)
Разберём, как работает WSGI, создадим минимальный фреймворк с маршрутизацией и поймём, что лежит в основе Django.
→ Записаться
📺 Знакомство с Django REST Framework: создание API на Django | 17 апреля в 20:00 (Мск)
Узнаете, как строить REST API на Django, сделаете первый шаг к полноценным бэкенд-сервисам.
→ Записаться
📺 Асинхронное Django-приложение: работа с асинхронными ORM и views | 23 апреля в 20:00 (Мск)
Освоите asyncio в Django, научитесь писать асинхронные представления и взаимодействовать с БД.
→ Записаться
Записывайтесь на открытые уроки и получите практические знания из первых рук. Все занятия проводятся онлайн, а ведут их опытные разработчики!
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
🔍Что лучше Kafka или RabbitMQ?
20 марта (в четверг) в 19:00 по мск приходи на открытый урок, где ментор объяснит, какую очередь лучше выбрать для своих проектов и не тратить время на переделки.
Разберем все, что нужно знать про очереди для работы и собесов:
📂 Когда использовать RabbitMQ, а когда Kafka?
📂 Как очереди влияют на масштабируемость и производительность?
📂 Какие ошибки чаще всего совершают разработчики?
Это бесплатно. Лекция проходит в рамках курса от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд и прокачать скиллы.
+ Все участники эфира получат бесплатный урок по System Design.
Переходи в бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqwLFHe7