pythonhub | Technologies

Telegram-канал pythonhub - PythonHub

1140

News & links about Python programming. https://pythonhub.dev/ Administrator: @rukeba

Subscribe to a channel

PythonHub

EasyAnimate

An End-to-End Solution for High-Resolution and Long Video Generation Based on Transformer Diffusion.

https://github.com/aigc-apps/EasyAnimate

Читать полностью…

PythonHub

Introducing DjangoVer

The article introduces DjangoVer, a versioning system for Django-related packages that aligns the package version with the latest supported Django feature release. It provides clarity on compatibility, signaling maintenance and compatibility status through the version number while addressing limitations of traditional versioning systems like Semantic Versioning.

https://www.b-list.org/weblog/2024/nov/18/djangover/

Читать полностью…

PythonHub

Deply: keep your python architecture clean

https://www.reddit.com/r/Python/comments/1gthdpy/deply_keep_your_python_architecture_clean/

Читать полностью…

PythonHub

Python Hub Weekly Digest for 2024-11-24

https://pythonhub.dev/digest/2024-11-24/

Читать полностью…

PythonHub

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.

https://github.com/NVIDIA/TransformerEngine

Читать полностью…

PythonHub

alphafold3

AlphaFold 3 inference pipeline.

https://github.com/google-deepmind/alphafold3

Читать полностью…

PythonHub

Tutorial: How to rate limit Python async API requests

With an example that performs 100 simultaneous requests to the Etherscan API

https://elnaril.hashnode.dev/how-to-rate-limit-python-async-requests-to-etherscan-and-other-apis

Читать полностью…

PythonHub

Understanding Multimodal LLMs

An introduction to the main techniques and latest models.

rasbt/p-151078631">rasbt/p-151078631" rel="nofollow">https://substack.com/@rasbt/p-151078631

Читать полностью…

PythonHub

Python dependency management is a dumpster fire

This article is all about fire safety techniques and tools. It's about how you should think about dependency management, which tools you should consider for different scenarios, and what trade offs you'll have to make. Finally, it exposes the complexity and lingering problems in the ecosystem.

https://nielscautaerts.xyz/python-dependency-management-is-a-dumpster-fire.html

Читать полностью…

PythonHub

Python, C++ inspired language that transpiles to C and can be embedded within C

https://github.com/AnilBK/C-Preprocessor-Language

Читать полностью…

PythonHub

ML in Go with a Python Sidecar

https://eli.thegreenplace.net/2024/ml-in-go-with-a-python-sidecar/

Читать полностью…

PythonHub

NanoDjango - single-file Django apps | uv integration

NanoDjango is a cool package that lets you build small scripts using all the power of Django, and also supports django-ninja for APIs. We'll dive into NanoDjango in this video, and will use uv and inline script metadata for dependency management.

https://www.youtube.com/watch?v=0-iuJgfQMOw

Читать полностью…

PythonHub

chonkie

The no-nonsense RAG chunking library that's lightweight, lightning-fast, and ready to CHONK your texts.

https://github.com/bhavnicksm/chonkie

Читать полностью…

PythonHub

BeamerQt

PyQt-based application to create Beamer-LaTeX Presentations.

https://github.com/acroper/BeamerQt

Читать полностью…

PythonHub

Thoughts on Django’s Core

Django's longevity is attributed to its stable core, time-based releases, and API stability policy. While there's enthusiasm for expanding Django's features, the author argues that the core should remain focused and prioritize stability. Instead, the community should embrace third-party packages as a way to innovate and extend Django's capabilities without compromising its core.

https://buttondown.com/carlton/archive/thoughts-on-djangos-core

Читать полностью…

PythonHub

Is async django ready for prime time?

Explore async Django's readiness for production use, its benefits, challenges, and how AI workloads can leverage its capabilities effectively.

https://jonathanadly.com/is-async-django-ready-for-prime-time

Читать полностью…

PythonHub

Flask 3.1.0 Released

https://flask.palletsprojects.com/en/stable/changes/#version-3-1-0

Читать полностью…

PythonHub

PyPI now has attestation. Thanks I hate it.

https://www.reddit.com/r/Python/comments/1gs05hm/pypi_now_has_attestation_thanks_i_hate_it/

Читать полностью…

PythonHub

Everything I've learned so far about running local LLMs

A post about running large language models (LLMs) locally on a computer. It discusses what LLMs are and how to set them up to run on your own machine. The article also covers some of the limitations of LLMs, but highlights their potential for tasks like proofreading and creative writing.

https://nullprogram.com/blog/2024/11/10

Читать полностью…

PythonHub

CPython's Garbage Collector and Its Impact on Application Performance

https://blog.codingconfessions.com/p/connecting-cpythons-gc-internals

Читать полностью…

PythonHub

Proposal for a Django project template

The author's take on what could be a project template for Django advanced usage, with modern tooling (for Python and UI dependencies, as well as configuration/environment management), but not too opinionated.

https://david.guillot.me/en/posts/tech/proposal-for-a-django-project-template/

Читать полностью…

PythonHub

Query Your Python Lists

https://github.com/mkalioby/leopards

Читать полностью…

PythonHub

Protenix

A trainable PyTorch reproduction of AlphaFold 3.

https://github.com/bytedance/Protenix

Читать полностью…

PythonHub

weft

https://github.com/dpunj/weft

Читать полностью…

PythonHub

The Practical Guide to Scaling Django

Most Django scaling guides focus on theoretical maximums. But real scaling isn’t about handling hypothetical millions of users - it’s about systematically eliminating bottlenecks as you grow. Here’s how to do it right, based on patterns that work in production.

https://slimsaas.com/blog/django-scaling-performance

Читать полностью…

PythonHub

Cosmos-Tokenizer

A suite of image and video neural tokenizers.

https://github.com/NVIDIA/Cosmos-Tokenizer

Читать полностью…

PythonHub

pipe-operator

Elixir's pipe operator in Python.

https://github.com/Jordan-Kowal/pipe-operator

Читать полностью…

PythonHub

Flash Attention derived and coded from first principles with Triton (Python)

This video provides an in-depth, step-by-step explanation of Flash Attention, covering its derivation, implementation, and underlying concepts. The presenter explains CUDA, Triton, and autograd from scratch, then derives and codes both the forward and backward passes of Flash Attention.

https://www.youtube.com/watch?v=zy8ChVd_oTM

Читать полностью…

PythonHub

microsoft / autogen

A programming framework for agentic AI 🤖

https://github.com/microsoft/autogen

Читать полностью…

PythonHub

Muon

Muon optimizer for neural networks: >30% extra sample efficiency, <3% wallclock overhead.

https://github.com/KellerJordan/Muon

Читать полностью…
Subscribe to a channel