Чуть не забыл, новая Пушка. Буду закидывать и сюда новые выпуски, потому что уведомления далеко не всегда срабатывают на Ютубе
https://youtu.be/CWp6fRMqJ6Y
Если вы завели щенка и у вас началась послеродовая хандра (не путать с депрессией), то это нормально, какого пола или гендера вы ни были бы. Што?! Да! Ученые впервые разработали шкалу для измерения послеродовой хандры у владельцев собак.
Вы наверняка слышали о послеродовой депрессии у молодых мам. Так вот, оказывается, похожие симптомы могут испытывать и новоиспеченные владельцы щенков — стресс, тревога, чувство вины, раздражительность, усталость, проблемы со сном. Это состояние еще называют "щенячьей хандрой" (или puppy blues, по аналогии с baby blues), штука хорошо известная среди собачников, но до сих пор почти не изучавшаяся всерьез.
Грустишь ну и грусти, зачем нужна еще какая-то шкала?
Во-первых, это поможет лучше понять, насколько распространена проблема и какие факторы на нее влияют.
Во-вторых, это позволит придумать методы, чтобы помочь тем, кто страдает от нее. Ведь если не обращать внимания даже на такую хандру, она может привести к более серьезным последствиям, например, собакена бросят. А этого мы не хотим, верно? Мы хотим, чтобы его любили и у него был дом, правда же?
Так вот исследование выявило три основных фактора, по которым можно определить и даже измерить щенячью хандру:
1. Фрустрация: чувство неудовлетворенности, раздражение по отношению к щенку, сожаление о его появлении.
2. Тревожность: беспокойство о благополучии щенка, чувство вины и некомпетентности как владельца.
3. Усталость: истощение, проблемы со сном, ощущение, что щенок отнимает все время и силы.
Опросник обкатали почти на двух тысячах собачников в Финляндии, и он показал хорошую надежность и валидность, то есть, похоже, действительно измеряет то, что должен измерять.
Заодно ученые увидели и картину в целом. Оказалось, что почти половина владельцев собак (45%) испытывали “значительный дискомфорт”, когда щенок появился в их доме (причем они же сами заводили его). При этом у 20% симптомы длились меньше месяца, у 31% — от 1 до 5 месяцев, у 29% — от полугода до года, а у 19% — больше года.
Интересно, что со временем воспоминания о щенячьем периоде становятся более позитивными. Это явление называется "искажение воспоминаний в сторону позитива" (fading affect bias).
В общем, теперь, получается, у нас есть первый инструмент для измерения щенячьей хандры. И это, кажется, только начало. Исследователи хотят изучить проблему основательнее, чтобы понять, что именно и как порождает факторы риска такого состояния и как можно эффективно и системно помогать владельцам щенков. Если будут научно обоснованные методики, то их могли бы применять сообщества собачников, чтобы помогать друг другу уже более продуктивно, а не по наитию. Немало собачников проходят курсы обучения своих питомцев, так что к ним вполне можно добавить и специальные тренинги или консультации для тех, кто только готовится завести щенка. Это помогло бы подготовиться к трудностям и избежать развития щенячьей хандры. Ну совсем, как с детьми. А разве эти малыши не дети?
👾 Подписаться на SciOne 👾
#новости
Иногда быть мышью тревожно. Вот исследуете вы преспокойно окружающий мир, как вдруг замечаете кошачью лапу в щели за дверью. Что делать? Побить вряд ли побьете, а вот загрызть вас могут. Значит, бежать, конечно! Это мы тут рассудили так. А как мозг принимает за доли секунды это решение и помогает воплотить? Как ни странно в этом механизме до сих пор много загадок, а новое исследование помогает понять про него кое-что очень интересное: нейроны, которые помогают нам бежать, действуют как тормоз для мозга. Сейчас разберемся.
Эта автоматическая реакция известна как “бей или беги”, и по сути это физиологический процесс. Она помогает выживать, потому что срабатывает в ответ на нечто, что нервная система сочтет угрозой (не обязательно угроза должна быть реальной) и готовит организм к борьбе или к бегству от нее.
Главную роль, как считается, здесь играет миндалевидное тело — область мозга, отвечающая за обработку эмоций, включая страх. Когда мышь (или человек) сталкивается с угрозой, миндалевидное тело активируется и посылает сигналы в другие части мозга, в том числе гипоталамус. Гипоталамус, в свою очередь, активирует симпатическую нервную систему, что приводит к выбросу адреналина и норадреналина.
Эти гормоны вызывают цепочку физиологических изменений, например, учащение сердцебиения и дыхания, повышение артериального давления, расширение зрачков и перераспределение кровотока к мышцам. Все это подготавливает организм к быстрой реакции на угрозу.
Но ведь с таким запалом теперь можно и бежать и драться, так как же мозг решает, что делать? И как он координирует сложные двигательные действия, если решает бежать?
Чтобы ответить на эти вопросы, авторы нового исследования обратили внимание на область мозга, называемую околоводопроводное серое вещество (PAG, то есть periaqueductal gray или central gray). Эта структура находится в среднем мозге и играет ключевую роль для запуска и обеспечения защитных реакций, в том числе побега.
Предыдущие исследования показали, что в PAG есть разные группы нейронов, которые активируются в ответ на угрозу и запускают различные защитные реакции, например, замирание, агрессия или то же бегство. Но точные механизмы были непонятны.
Так вот в новом исследовании присмотрелись к “тормозным” нейронам в PAG. Они выделяют нейромедиатор гамма-аминомасляную кислоту (ГАМК), которая подавляет активность других нейронов.
Ученые обнаружили, что ГАМКергические нейроны в PAG обладают необычным свойством: они постоянно генерируют потенциалы действия (электрические импульсы), даже в отсутствие внешних стимулов. Это явление называется тонической активностью.
Получается, они действуют как тормоз, не позволяющий преждевременный запуск реакции, и как регулятор, контролирующий продолжительность и интенсивность движений во время побега.
То есть эти нейроны обеспечивают постоянное торможение возбуждающих нейронов в PAG, которые отвечают за запуск и поддержание двигательной активности.
Активность же “тормозных” нейронов изменяется в зависимости от контекста. Когда мышь сталкивается с угрозой, активность ГАМКергических нейронов снижается, что приводит к растормаживанию возбуждающих нейронов и запуску реакции побега.
А после начала побега активность ГАМКергических нейронов постепенно возрастает, достигая пика в момент прекращения движения. Это говорит о том, что ГАМКергические нейроны также участвуют в остановке реакции побега.
Ну выяснили и выяснили, но теперь мы можем работать с этими реакциями намного более осмысленно, что поможет с лечением тревожных расстройств и посттравматического стрессового расстройства, потому что они связаны с нарушениями в регуляции реакции «бей или беги».
👾 Подписаться на SciOne 👾
#новости
Доброго вам воскресенья, друзья! Новая Пушка выходного дня
https://youtu.be/TFS3YK_vQok
Казалось бы, о свойствах света мы знаем уже больше, чем нужно, однако ученые обнаружили ранее неизвестный способ взаимодействия света с веществом. Оказывается, такой материал, как кремний, на первый взгляд, скудный по своим оптическим свойствам, может излучать свет в ответ на видимое излучение, если его определённым образом обработать. Это открытие может помочь заметно улучшить, например, солнечные батареи, светодиоды и полупроводниковые лазеры.
Исследователи выяснили, что фотоны могут получать значительный импульс, аналогичный импульсу электронов в твердых материалах, когда они ограничены в наноразмерных пространствах в кремнии. Хотя ученые знали об этом явлении десятилетиями, точное происхождение свечения было предметом споров.
Это явление аналогично явлению комптоновского рассеяния. В 1923 году Артур Комптон обнаружил, что гамма-фотоны обладают достаточным импульсом для взаимодействия со свободными или связанными электронами, доказав, что свет обладает как волновыми, так и корпускулярными свойствами. В новых экспериментах ученые показали, что импульс гораздо менее мощного по сравнению с гамма-излечением видимого света, ограниченный нанокристаллами кремния, производит аналогичное оптическое взаимодействие в полупроводниках, что раньше считалось невозможным.
Понимание природы этого взаимодействия требует возврата к работам индийского физика Ч.В. Рамана, который в 1928 году безуспешно пытался повторить эксперимент Комптона с видимым светом из-за существенной разницы в импульсах электронов и видимых фотонов. Тем не менее, его исследования неупругого рассеяния в жидкостях и газах привели к открытию колебательного эффекта Рамана и спектроскопии, получившей его имя.
Новое открытие фотонного импульса в разупорядоченном кремнии связано с формой электронного рамановского рассеяния, которое, в отличие от обычного колебательного, включает различные начальные и конечные состояния электрона - явление, ранее наблюдавшееся только в металлах.
Это открытие бросает вызов нашему пониманию взаимодействия света и вещества, подчеркивая критическую роль импульса фотонов. В разупорядоченных системах согласование импульсов электронов и фотонов усиливает взаимодействие - аспект, ранее связанный только с высокоэнергетическими гамма-фотонами в классическом комптоновском рассеянии. В конечном счете, это исследование прокладывает путь к расширению применения оптической спектроскопии за пределы традиционного химического анализа в область структурных исследований. Это открытие позволит повысить эффективность устройств преобразования солнечной энергии и светоизлучающих материалов, включая те, которые ранее считались непригодными для излучения света. Будущее оптоэлектроники выглядит ярким!
Исследование
👾 Подписаться на SciOne 👾
#новости
Землетрясения — это, прежде всего, следствие движения тектонических плит земной коры. Однако учёные обнаружили, что некоторые землетрясения могут быть вызваны гораздо более неожиданными причинами. Например, снегопады и дожди.
Учёные присмотрелись к серии землетрясений, происходивших на японском полуострове Ното с конца 2020 года. В отличие от типичной последовательности "главный толчок - афтершоки", здесь наблюдалась серия множественных продолжающихся толчков без явного основного. Более того, у этих землетрясений не было очевидного сейсмического триггера.
Проанализировав данные о сейсмической активности в регионе, исследователи обнаружили любопытную закономерность. Начало серии "нетипичных" землетрясений на Ното в 2020 году оказалось синхронизировано с изменениями давления под землёй, на которые повлияли сезонные колебания погоды - выпадение осадков в виде дождей и снега.
Дождь и снег увеличивают поровое давление в земных трещинах и разломах, замедляя распространение сейсмических волн. Когда вода уходит или испаряется, давление падает, и волны распространяются быстрее. Учёные разработали трёхмерную модель, которая подтвердила, что сильные снегопады могут частично объяснить многие землетрясения на Ното.
Таким образом, даже такие привычные явления, как осадки, могут оказывать влияние на сейсмическую активность. Это открытие поможет лучше понять иные механизмы возникновения землетрясений и, возможно, в будущем научиться их прогнозировать.
Исследование
👾 Подписаться на SciOne 👾
#новости
Представьте себе ИИ-врача, которого не колбасит из-за галлюцинаций, то есть он, например, не прописывает несуществующее лекарства от вашей реальной болезни. Так вот Google со своим ИИ-танком в виде Deep Mind, отставая в гонке универсальных моделей вроде GPT-4 и Claude 3, сделали ход конем и выпустили Med-Gemini, которая специализируется в медицинских вопросах.
Это новое поколение мультимодальных систем, способных обрабатывать информацию из разных источников: текста, изображений, видео и аудио. Как работает Med-Gemini разбирается в работе на 58 страниц, ссылка на нее, как всегда, в конце поста.
Для постановки диагноза и выбора лечения врачам обычно нужно сочетать свои медицинские знания с множеством других данных: симптомами, историей болезни, результатами анализов и т.д. Med-Gemini умеет искать дополнительную информацию в интернете (на профильных медицинских ресурсах, куда ходят и врачи-люди уточнить свои знания), чтобы уточнить свои ответы на медицинские вопросы. Электронные медкарты могут быть очень объёмными, но врачи должны знать, что в них содержится, могут упускать детали. Med-Gemini может находить упоминания редких заболеваний и симптомов в огромных массивах медицинских записей. В тестовых беседах Med-Gemini задавал уточняющие вопросы пациенту, жалующемуся на зудящее образование на коже, попросил фото, поставил правильный диагноз и дад рекомендации по лечению. И всё это без специального обучения именно диалогам с пациентам, по которым поди найди или сделай сколь-нибудь внушительный датасет (врачебная тайна — юридическое серьезное препятствие для таких разработок)!
Конечно, исследователи признают, что предстоит ещё много работы. Необходимо учесть вопросы конфиденциальности, справедливости и безопасности, прежде чем такие системы можно будет применять в реальной медицине. Но заметьте, они в основном не инженерные, а юридические и социальные. А вы бы доверились такому врачу?
Исследование
👾 Подписаться на SciOne 👾
#новости
А давайте заставим мух играть в видеоигры? А давайте, решили авторы этого исследования. Всё ради науки, конечно, а точнее: чтобы разобраться в одной из самых удивительных и загадочных структур, созданных природой — крыльях насекомых. Это толькоа кажется, что мы уже понимаем до конца, как они работают. Например, всё еще не ясно, вплоть до инженерных деталей, как крылья насекомых преобразуют незначительные движения мышц в энергию для столь маневренного и быстрого полёта.
Автор работы, помимо сложной и громоздкой экспериментальной установки, придумали целую видеоигру для мухи, чтобы одновременно регистрировать сокращения всех мельчайших мышц, приводящих в движение эти крохотные крылышки, и фиксировать их движения по всем трём осям.
Крылатое насекомое окружили панорамой из светодиодных экранов. VR на минималках. Окружение в игре могло как реагировать на движения мухи, так и им можно было управлять извне. Это позволяло исследователям менять ход полёта — заставлять уклоняться влево, вправо, вверх, вниз, ускоряться или замедляться.
Кажется, что смешное дело, а на деле архитектура эксперимента была очень сложной. Нужно было предельно точно (до нанометров) остлеживать движения 12 мельчайших мускулов крыльев мухи и их взаимодействия с трехмерными изменениями полета. Все операции выполнялись в реальном времени при сохранении комфортных условий для насекомых. Особенно это касалось температуры воздуха, мухи гораздо менее охотно летали при температуре выше 25 градусов по Цельсию.
Для отображения работы мускулов в режиме реального времени ученые использовали микроскоп, который проецировал свет определенной длины волны на муху для возбуждения люминофора в мускулах, движения которых потом тщательно записывались.
Что касается записи движения крыльев, то были использованы три высокоскоростные камеры, способные снимать с частотой 15 000 кадров в секунду. Эти камеры работали на максимально высоком разрешении, доступном для таких устройств. Снова и снова всё ради тех самых мельчайших движений и мышц.
В результате собрано гигантское количество данных по 72 000 взмахам крыльев! Часть этого массива пошла на обучение нейронной сети, способной предсказывать движение крыльев по активности мышц. Также была построена физическая модель мускульной системы крылышек мухи и шарниров, к которому эти крылышки прикреплены.
Пока что эксперименты проводились только на генномодифицированных плодовых мушках, но исследователи надеются, что в будущем смогут сравнить свои результаты с данными по москитам. Полученные знания авторы планируют использовать для создания компьютерных симуляций и разработки физических устройств, воспроизводящих работу крыльев.
Исследование
👾 Подписаться на SciOne 👾
#новости
Скрасим выходные победителем кому милого, кому заставляющего испытывать неловкость конкурса "Станцуй свою кандидатскую", который проводит ежегодно очень серьезный и престижный научный журнал Science.
Хотел стать музыкантом, но стал учёным — рассказывает о себе победитель этого года Менарио Коста. Так что видео он делал по-взрослому, со всей страстью нереализованной мечты.
https://youtu.be/RoSYO3fApEc
Коста изучает кенгуру, так что и клип про них. Снимали в национальном парке в Бразилии, где исследователь работал 3 года. В клипе Коста делится главным, что узнал про этих удивительных животных:
🦘 кенгуру — социальные животные, но могут переходить из одной группы в другую
🦘 у каждого кенгуру — своя уникальная личность (особый набор индивидуальных особенностей поведения)
🦘 эти особенности проявляются уже в раннем детстве
🦘 близнецы у кенгуру часто очень похожи и этими особенностями поведения, а еще так же похожи матери и их дети
🦘 несмотря на личные особенности, кенгуру стремятся подстраивать свое поведение под порядки, существующие в группе, в которой они находятся, им важнее быть, как все, чем следовать своим личным инстинктам
🦘 очень сильно то, как устроена группа, зависит от особенностей пространства, в котором она обитает
🦘 но похожие "личности" у кенгуру (со схожими особенностями поведения) стремятся сбиваться в общие группы
В общем, кенгуру — классные и сложные, а вовсе не простаки.
Любые же аналогии с людьми могут навести на интересные мысли, но мы все же разные, поэтому выводы про нас лучше делать по исследованиям людей 🤓
Про конкурс подробнее здесь, там же клипы других участников
👾 Подписаться на SciOne 👾
#познавательное
Ой-ой: “Худейте без стресса при помощи чайного гриба”, или “Голодание без голодовки: наука комбучи" - инстагуру нутрициологии воодушевились. Вышло тут исследование. Что же выяснили биологи на самом деле?
Микроорганизмы в комбуче, многим известной как чайный гриб, влияют на экспрессию генов в кишечнике, особенно связанных с жировым обменом. В результате улучшается расщепление жиров и замедляется производство белков, необходимых для синтеза жирных компонентов – триглицеридов.
Получается, симбиоз дрожжей и бактерий, который превращает чай в этот напиток, способен изменить метаболизм жиров без кардинального изменения диеты? Подумать только, запасы жира будут уменьшаться сами по себе!
Но бахнем бочку скепсиса в эту ложку метаболического оптимизма. Речь в исследовании идёт только о возможном полезном воздействии на обмен веществ бактерий видов Acetobacter, Lactobacillus и Komagataeibacter, которые уже известны своими положительными эффектами для здоровья человека, например, некоторые влияют на снижение давления. То есть исследователи пока только предположили, наблюдая открытый механизм. А как оно на самом деле, могут показать разве что клинические испытания, которых пока никто не планировал. Ведь для этого надо сделать некий препарат или разработать терапию, которых тоже нет.
Так откуда вывод о положительных эффекта комбучи? В этом исследовании наблюдали за животными, которых кормили исключительно пробиотическими микробами чайного гриба. Подопытные действительно демонстрировали меньшее накопление жира, более низкий уровень триглицеридов и меньший размер липидных капель – органелл, которые накапливают липиды в клетках. Но есть жирное "но": проверяли на модельных червях C. elegans. То есть даже не на мышах! Конечно, между проблемами с лишним весом у червей и нашими существует, мягко говоря, небольшая разница.
Зато из чайного гриба получается отличный квас, освежает. В летнюю жару самое то.
Исследование
👾 Подписаться на SciOne 👾
А вот и новая Пушка, если вдруг не попалась на глаза на Ютубе. Пути алгоритмов его все еще неисповедимы.
https://youtu.be/x37e7I-zP0E
Как же я люблю их слушать! А когда они спорят про количество измерений пространства и времени -- это интеллектуальный экстаз. В новом ролике как раз они это делают. Посмотрите сами, это удовольствие, ради которого стоит поставить телефон в тихий режим и преисполниться. Владимир Сурдин и Алексей Семихатов расширяют сознание, как только они умеют.
https://www.youtube.com/watch?v=RB18ITR2eS0
На этом кадре следы неизвестной марсианской катастрофы — более двух миллиардов кратеров от одного удара. В новом исследовании ученые восстановили, что произошло и когда.
Около 2,3 млн лет назад с Красной планетой столкнулся метеорит. В результате образовался “фонтан” из обломков, которые разлетелись во все стороны. Исследователи распределили вторичные кратеры по 4 группам — по форме и расстоянию от основного. Какие-то были почти округлой формы и располагались ближе к основному кратеру, а какие-то — имели более вытянутую форму и находились, соответственно, дальше.
Это позволило рассчитать возможную скорость при столкновении и объем выброшенного грунта. Немного эллиптическая форма кратера Corinto и направление его "спутников" указывали на то, что метеорит, скорее всего похожий на кусок базальта, прилетел с севера под углом в 30-45 градусов. Более того, на месте удара, вероятно, было много водяного льда. На эту мысль наталкивают ямы, возникшие от обломков ледяных глыб. Вода испарилась, а углубления остались. Но это, конечно, гипотеза.
Всё это ученым удалось разглядеть и разложить благодаря снимкам камеры высокого разрешения HiRISE и камеры CTX марсианского орбитального аппарата MRO. Он сейчас кружит вокруг Марса. С его помощью мы можем рассмотреть то, что не замечали или не могли увидеть прежде.
Снимок в полном разрешении
Исследование
👾 Подписаться на SciOne 👾
#новости
Эта новость будет интересна, пожалуй, только ИИ-энтузиастам, а точнее — тем, кто использует нейросети и хочет иметь больше возможностей. Мы тут с ребятами делаем (ну как мы: они делают, а я занудничаю и пытаюсь вдохновлять, одновременно) платформу, где можно работать сразу со всеми лучшими на сегодня моделями (Claude 3, GPT-4, Mistral, Cohere, скоро будет и Midjourney). Прям в одном чате. Одну просишь перевести текст, другую — отредактировать. Третья ищет в интернете. Четвертая рисует картинки или анализирует файл.
А еще промпты больше не нужно держать где-то в заметках, скакать туда-сюда и рыскать по ним. Здесь же хочешь — берешь готовые из 9000 уже проверенных, хочешь — сохраняешь свои. Теперь они всегда под рукой, пускаешь в работу за пару кликов. Это особенно удобно для работы в командах. Скоро выкатим и командный режим.
А еще функция, которую до сих пор не может позволить себе даже OpenAI, а мы смогли: создавать папки, перетаскивать их, чаты, закреплять, и раскладывать, как удобно. А если забыл, где что-то лежит: можно воспользоваться тут же поиском по чатам. Неземные технологии.
Есть еще тонкая настройка запросов, мультипромптирование, не говоря о новом функционале, который сейчас в работе, но про это как-нибудь в других постах. Буду изредка делиться.
Если хотите потестировать, айда: Upgraide.me
❗️Осторожно: мы только-только вышли в ранний доступ, поэтому могут быть баги, это нормально, сообщайте про все, ребята чинят оперативно. Это можно делать и в группе в Телеге.
Есть бесплатный тариф, но если вам нужно будет уже основательнее использовать, то на первый месяц берите скидку. Платите вы только за токены, их расход видите в панели аккаунта, все прозрачно. И главное, никаких ограничений по количеству запросов.
Для скидки 45% при регистрации введите код: SciOneAI
❗️ Важно: на почту вам придет письмо со ссылкой для подтверждения (иногда попадает в папку Спам), пройдите по ней, чтобы завершить регистрацию.
Учёные получили новое изображение сверхмассивной чёрной дыры в центре нашей галактики. И оно особенное. На нем вы можете видеть то, что не увидели бы ни вживую, ни на фото (если бы оно было возможно) — линии магнитных полей.
Это реконструкция, полученная с помощью радиотелескопов, разбросанных по всей Земле. Они образуют астрономический интерферометр — телескоп с апертурой размером с Землю, дающий невероятную разрешающую способность. Минус — они собирают очень мало излучения, и его приходится очень долго накапливать. В процессе наблюдения каждый из этих телескопов, синхронизировано при помощи атомных часов, собирает данные наблюдения, потом они передаются в специальные дата-центры и обрабатываются при помощи специальных алгоритмов. И получаются такие вот изображения, каждое — уникальное пока что и на работу над ними уходят месяцы и годы.
Сложность в том, что чёрная дыра в центре галактики скрыта массивными облаками пыли и газа, которые прозрачны только для радиоволн. К тому же, несмотря на то, что это сверхмассивная чёрная дыра, её угловой размер при наблюдении с Земли очень мал, ни один существующий оптический телескоп не отличит её от точки, если бы мог “разглядеть”.
Для обывателя - это просто картинка, в центре которой виднеется тень от чёрной дыры. Для специалистов - это изображение содержит много данных, например о скорости вращения газа вокруг чёрной дыры, его температуре, релятивистских эффектах и прочие данные. Новое изображение может показаться просто дорисовкой до популярного представления о чёрных дырах как о воронках. И это может приводить к неверному или неточному пониманию того, что мы здесь видим. Ранее такое же изображение получили для черной дыры в центре галактики М87. И на самом деле то первое и это новое изображения сделаны в поляризованном свете.
Поляризованный свет (в том числе и радиоволны) — это электромагнитное излучение, в котором возмущения электромагнитного поля происходят строго в одной плоскости, а не во всех возможных плоскостях. Такой свет может появляться, например, под воздействием экстремально сильных магнитных полей. Именно это хотели разглядеть учёные, изучая данные наблюдений чёрной дыры в центре нашей галактики . Отфильтровав данные по поляризации, получили такую вот воронку, которая очень многое сообщает о структуре магнитного поля чёрных дыр.
Предстоит много работы по изучению данных, которые собрали, их нужно, например, сравнить с теоретическими предсказаниями, так как магнитные поля могут очень многое рассказать нам о том, что на самом деле происходит вблизи таких объектов, как сверхмассивные чёрные дыры.
Исследования: 1, 2
👾 Подписаться на SciOne 👾
#новости
А помните были недавно еще громкие новости про то, как студенты то курсовые, то дипломные работы пишут с помощью ChatGPT (или каких еще больших языковых моделей) и успешно таки сдают? Уже менее шумно в ответ появлились новости про то, как вузы пробуют системы обнаружения сгенерированных текстов, чтобы систему оценок и с ней образования спасти. Так вот наконец за вопрос взялись по-научному. Авторы нового исследования решили проверить в контролируемом эксперименте, а готова ли система образования к натиску роботов под видом прилежных студентов, могут ли преподаватели распознать, где человек, а где искусственная нейронка отвечает. Эдакий “тест Тюринга” для профессоров. Спойлер: всё плохо. Очень плохо.
Ученые "внедрили" больше 30 работ, полностью написанных ИИ (использовали ChatGPT-4), в общий поток работ, которые шли на проверку у преподавателей в бакалавриате по психологии. Профессора не знали об эксперименте.
94% работ, авторства ИИ, прошли как человеческие. Более того, оценки у ИИ были в среднем на полбалла выше, чем у реальных студентов.
Занимательно, что единственный предмет, где студенты обошли ИИ, был финальный курс по психологии (заключительный модуль). Вероятно, потому что в абстрактном мышлении люди пока в целом сильнее ведущих больших языковых моделей, типа GPT-4. Но учитывая темпы развития этих алгоритмов, стоит подчеркнуть — пока. Интересно, посмотреть то же самое у инженеров и естественников-студентов, какие будут результаты.
Но вряд ли имеет смысл отрицать, что студенты с каждым выходом новых версий будут получать все более мощные модели для решения и математических задач, и сдачи экзаменов практически любой сложности. Ведь это экзамены, а не расширение пределов известного. И это потребует от систем образования меняться и довольно быстро (хотя бы за счет внедрения систем для выявления ИИ-работ), иначе наметится серьезный кризис. Ведь если способные студенты, кто прилежно учится, будет получать оценки хуже хитрых студентов, то вся система оценок как система поощрения и мотивации (ну, или контроля усвоения материала и наказания) потеряет смысл.
Впрочем, не факт, что это главная проблема. А надо ли готовить, как мы сейчас готовим, если человек уже справляется хуже с тем, что машина делает лучше. Логичнее было бы и учить, готовить к другому… Но это отдельный большой разговор. Если вы преподаете, поделитесь в комментариях своими страхами, ощущениями в преддверии вездесущих ИИ-генераций от ленивых/находчивых студентов. Может, у вас уже есть идеи, что стоит делать, чтобы система подготовки не посыпалась окончательно?
👾 Подписаться на SciOne 👾
#новости
Вы когда-нибудь слышали (извините за каламбур) о скрытой потере слуха? Это такая штука, когда у человека слух по аудиограмме нормальный (в тесте, который проверяет, как хорошо вы слышите разные звуки), но тому же человеку трудно разбирать речь, особенно в шумных местах. Стоите вы на вечеринке, и вроде бы все говорят достаточно громко, но вы всё равно не можете разобрать слов. Или пытаетесь говорить по телефону в шумном кафе, динамик вроде хорошо работает, а вам все равно приходится серьезно напрягаться, чтобы понять собеседника. Вот это и есть оно самое — скрытая потеря слуха (СПС). Не самая большая беда, но может сильно портить жизнь. И тут в поисках решения исследователи получили у подопытных вдруг противоположное — сверхслух.
Ученые давно выяснили, что одна из причин СПС — это повреждение синапсов между внутренними волосковыми клетками и слуховыми нейронами. Синапсы передают сигналы от этих клеток к мозгу. Когда синапсы повреждаются, мозг получает меньше информации о звуках, и это означает проблемы со слухом, даже если сами внутренние волосковые клетки в порядке. А что же повреждает синапсы?
Они очень чувствительны к разным вредным воздействиям, например, шуму, а еще не любят стареть. До сих пор по-настоящему эффективных методов лечения СПС не было. Выручают, конечно, слуховые аппараты или кохлеарные импланты, но это костыли — способы как-то комепнсировать проблему, а не решить ее. Но даже они не всегда помогают, потому что проблема не в самих волосковых клетках, а в связях между ними и слуховых нейронами.
И вот авторы нового исследования сделали интересное открытие. Они обнаружили, что количество синапсов между внутренними волосковыми клетками и слуховыми нейронами можно регулировать с помощью белка под названием нейротрофин-3 (Ntf3). Этот белок вырабатывается опорными клетками, которые окружают внутренние волосковые клетки.
Более того, учёные выяснили, что если увеличить количество Ntf3 в опорных клетках, то увеличивается и количество синапсов. А если уменьшить количество Ntf3, то и синапсов становится меньше. Это означает, что мы наконец могли бы лечить скрытую потерю слуха. Гипотезу хорошо бы проверить. Для этого учёные провели эксперименты на мышах. И выяснилось, что грызуны с повышенным уровнем Ntf3 стали лучше слышать. Лучше, чем обычные мыши, а не больные. Учёные проверили это с помощью специальных тестов, которые измеряют, как мозг реагирует на звуки. А с мыши с пониженным уровнем Ntf3 слышали хуже — у них количество синпасов сократилось.
Эксперименты проводили на генетически-модифицированных грызунах, так что понять, как провернуть то же самое у людей — следующая весьма нетривиальная задача. И если мы сможем делать это безопасно, то не только поможем тем, у кого проблемы со слухом, но, видимо, сможем и улучшать его.
👾 Подписаться на SciOne 👾
#новости
Вы слышали про эксперимент "третья волна"?
Учитель за 5 дней из класса сделал тоталитарное сообщество. Это было в 1967 году, когда еще часто задавались вопросом, а как стал возможен Холокост. Так вот учителя и некоторых его учеников спустя 60 лет нашли ребята с канала "Нормальные люди" и сняли отличный документальный фильм, чтобы разобраться, как пропаганда может делать из детей чудовищ — и можно ли этому противостоять.
https://youtu.be/15PINop0u3c
Несмотря на невероятную вычислительную мощь мозга, ему все еще не под силу полностью понять самого себя. Но это не останавливает ученых, стремящихся создать полную "карту" нейронных связей — так называемый "коннектом" человеческого мозга.
И вот команда исследователей из Гарварда и Google Research опубликовала полнейшую на сегодня “карту” нейронных связей в человеческом мозге. Правда, речь идет всего о крошечном образце ткани размером с маковое зернышко - всего 1 кубический миллиметр. Но даже в этом микроскопическом объеме содержится 57 000 нейронов, 230 миллиметров кровеносных сосудов и 150 миллионов синапсов.
Картографирование этого крохотного фрагмента мозга породило колоссальный массив данных - 1,4 петабайта (1,4 миллиона гигабайт)! Для сравнения, это эквивалентно 28 000 двухслойных Blu-ray дисков, уложенных в стопку высотой 364 метра - выше, чем Статуя Свободы на вершине Эйфелевой башни. Представьте теперь, какой объём данных потребуется для всего мозга!
Анализируя эти данные, ученые обнаружили множество интересных деталей. Они раскрасили нейроны в разные цвета в зависимости от их размера и типа, создав изображения, напоминающие густые леса. Исследователи также заметили необычные "завихрения аксонов" - странные петли, образованные длинными отростками нейронов. Возможно, это связано с эпилепсией, которой страдал донор этого образца мозга.
Конечно, этот крошечный фрагмент - лишь малая часть огромной головоломки под названием "человеческий мозг". Ученые уже смогли картографировать мозг червя и половину мозга плодовой мушки. Теперь они переходят к более сложным задачам - картографированию мозга мышей. И хотя до полной "карты" человеческого мозга еще очень далеко, этот результат обнадеживает насчет будущих открытий в нейробиологии.
Исследование
👾 Подписаться на SciOne 👾
#новости
Доброе утро! На связи Влад. Это длиннопост про полезное и уже родное, над чем мы сейчас работаем. Мы начали выкатывать возможности, которых нет даже у ChatGPT. (Самому не верится).
Я уже рассказывал о проекте, который, как очень надеюсь, даст возможность любому без специальной подготовки что-то улучшить в своей жизни или в окружающем мире с помощью нейросетей — Upgraide.me.
Поначалу может показаться, что это просто удобное окно доступа к разным моделям от универсальных (могут всё) GPT-4 и Claude 3 до специализированных (и потому более эффективных в своих узких задачах) Command R или Mistral. Ну да, по ходу чата ты можешь перекидывать задачи от одной нейронки другой, и получать лучший результат. Но!
Это была только подготовка к следующему этапу, который разворачивается прямо сейчас.
- Теперь любой ваш чат в Upgraide — это отдельная база данных. Это означает, что какого бы размера ни был чат, любая нейронка в нем (GPT-4, Claude 3 или те, что мы подключим позже) имеет “память” по всем сообщениям чата (находить нужное, вспоминать старые сообщения, обрабатывать) без выдумывания того, что в чате не обсуждалось. Скоро мы сделаем следующий шаг, и вы сможете использовать преимущества такого хранения сообщений еще и при работе с файлами: загружать комплект нужных вам документов, книг, статей и, например, просить найти в них информацию, обсудить что-то. Это позволит использовать весь массив загруженных данных и сообщений, без нужды анализировать по частям, а потом ломать голову, как собрать все результаты, или начинать новый чат каждый раз, когда уже не влезаете в “контекстное окно”.
- Теперь в Upgraide вы можете на запрос получать ответы сразу от разных нейронок и выбрать у каждой то, что вам подходит больше или просто целиком лучший ответ. У вас есть наглядный выбор. Так я, например, извлеченные данные забрал из ответа Mistral (всегда данные все равно проверяйте!), а у Claude 3 взял саммари (часто лучше GPT-4 пишет на русском).
- И наконец теперь вы можете менять ответ нейронки (пока только последний). Буквально: над сообщением нажимаете кнопку и вы оказываетесь в окне творческого режима. Выделите любой кусок текста, да хоть букву, и укажите, что с ним сделать. Пока там тестовый набор функций: написать пост в соцсети, предложить идеи, сочинить по мотивам или сделать пресс-релиз. Так вы получаете превью того, что сгенерировала модель. И решаете, берете или заново пусть попробует. То есть теперь вы можете не только пинг-понгом запрос-ответ выколачивать из нейронок нужный результат. Вы можете нырять внутрь и работать с содержимым, чтобы дальше в чате продолжать уже с готовым результатом.
Сейчас Upgraide.me в раннем доступе, строим, чиним на ходу, поэтому любое ваше мнение, отзыв — это возможность сделать сервис идеальным для всех нас. Сколько всего мы сами с его помощью делаем... Заходите тестировать, ругаться, хвалить, предлагать то, чего не хватает лично вам и что можно было бы улучшить. У нас есть комьюнити в ТГ.
Кто хочет глянуть одним глазком — для вас бесплатный тариф с GPT-3.5 и Claude Haiku. Кто хочет все модели, — берите любой тариф, они по сути отличаются только количеством токенов на месяц. И обязательно применяйте промокод (кликните, и он скопируется):
SciOneAI
Одна из форм прокрастинации, за которые стыдно, но меньше, чем за остальные — ролики по истории, особенно далекой и эпичной, как завоевание Англии человеком, который надолго сделал ее самой французской после Франции. Гео снял, как всегда, под стать истории — красиво, откровенно и увлекательно.
https://youtu.be/IVz7W51qNjA
Нейроимпланты — это, конечно, потрясающее будущее, которое сегодня становится реальностью. Но что делать, когда эти импланты технически устареют или их производитель прекратит поддержку? Если это смартфон, вы можете просто купить новый. А если это устройство в вашем черепе, которое, например, контролирует эпилептические приступы или снимает хроническую боль? Серьезная проблема поднимается в новом исследовании, где авторы предлагают некоторые неочевидные решения неочевидных задач.
В 2010м году жительнице Австралии Рите Леггетт вживили в мозг экспериментальное устройство, которое заранее предупреждало её о приступах эпилепсии, чтобы она могла вовремя принять лекарство и избежать приступа, или хотя бы прилечь и обезопасить себя. Устройство успешно функционировало, что позволяло Рите жить полноценной жизнью.
Но вскоре, посреди клинического испытания, компания NeuroVista, которая разработала устройство для Риты, закрылась. Инвесторы разуверились в проекте. Всем участникам, в том числе и Рите, пришли письма с требованием удалить импланты, так как, по договору, у них не было прав на это устройство, и они не могли его оставить себе и продолжать использовать. Устройство Риты удалили, несмотря на судебные тяжбы и предложения ее семьи выкупить устройство. Позже женщина говорила, что у неё будто “забрали часть её самой”.
Это не единственный подобный случай. Хотя удаления имплантов все же, как правило, удаётся избежать. Но такие юридические хитросплетения, а вовсе не научно-технологические проблемы, могут свести на нет весь эффект от лечения или терапии.
И вот авторы нового исследования проанализировали более 700 таких случаев и разработали для юристов формулу, которая должна защитить пациентов. Ученые предложили формальное определение "отказа от имплантированных неврологических устройств". Это и если у компании-разработчика нет планов по медицинской, технической и финансовой поддержке импланта, если она не выполняет обязательства по поддержке устройства до конца срока службы, если игнорирует насущные потребности пациента и неспособна обеспечить доступ к импланту и его обслуживанию после завершения клинических испытаний — всё это можно и нужно фиксировать в документах, считают исследователи.
По мнению учёных, это определение может стать основой для правил и политик в только зарождающейся индустрии, чтобы защитить пациентов и их врачей в случае, если производитель импланта закроется, обанкротится или просто перестанет поддерживать имплант. Тогда люди хотя бы своими силами могли бы поддерживать работу своих устройств и не бояться судебных исков. Ведь извлечение нейроимпланта — это слишком дорогая и рискованная процедура, чтобы просто у всех по умолчанию извлекать “собственность компании”.
А пока что судьба пациентов с нейроимплантами на самом деле во многом зависит от удачи и доброй воли производителей. Но с ростом популярности этих устройств (по прогнозам, к 2026 году рынок нейротехнологий достигнет 17,1 млрд долларов) ситуация должна измениться. Будем надеяться, что раньше, чем кто-то всерьез пострадает из-за излишнего приволья для разработчиков.
Исследование
👾 Подписаться на SciOne 👾
#новости
Новая научная загадка да ещё под самым носом. Исследователи обнаружили странный повтор в структуре различных соединений, который получил название "правило четырех". Анализ показал, что у 60% из более чем 80 000 изученных материалов минимальная повторяющаяся структурная единица содержит число атомов, кратное четырем. Самое удивительное, что ученые пока не могут объяснить причину этой аномалии.
И беспокойство ученых она вызывает из-за того, что теоретически все типы структур должны быть представлены в базах данных в равной степени, а значит, и заметных отклонений на таких массивах быть не должно. А тут очень странные загогулина выпирает и совсем не чуть-чуть. Нет ли в наших данных, которые используются в сотнях исследований, некой очень серьезной ошибки, которая до сих пор ускользала из-под носа?
Исследователи перепроверили работу алгоритмов, отвечающих за выделение элементарных ячеек в материалах, рассмотрели разные версии, но ни одно из предположений не подтвердилось. Даже специально разработанный алгоритм, группирующий соединения по сходству атомных свойств, не выявил иных закономерностей.
Любопытно, что при анализе данных с помощью алгоритма машинного обучения, нейросеть смогла предсказывать подчинение соединения "правилу четырех" с точностью до 87%. Это намекает на существование пока неизвестного людям фактора, лежащего в основе загадочной закономерности.м.
Исследование
Фото: Alessandro Piglione, победитель конкурса Royal Microscopical Society’s Scientific Imaging Competition
👾 Подписаться на SciOne 👾
#новости
Когда стареешь, время будто бы летит быстрее. Илья Абилов, один из отцов-основателей SciOne, напомнил, а я чуть не пропустил, что ровно 9 лет назад вышел наш первый выпуск. Тогда мы хотели сразу, как у взрослых, большая команда, много роликов, по 3, нет, по 4 в неделю, и чтобы динозавры ходили на фоне или ДНК крутилась красиво... Наивные, амбициозные, уверенные, что роликами можно менять людей и мир вокруг. Всего-то надо делать хорошо, увлекательно, вот мы глаза-то раскроем и больше людей будут ценить интеллект, науку, прогресс... Влад и команда SciOne из 2015, мне надо кое-что вам рассказать.
9 лет — проект старше, чем две мои дочки вместе взятые. Как с первым ребенком, первые годы — бессонные ночи, тревоги, вот и первые шаги (первые ролики на миллионы просмотров), 9 лет творческих экспериментов, на которые сейчас уже не решишься, потому что думаешь "ну ведь детский сад же". Но как прекрасно, что это было. И это было бы невозможно без людей, которые создавали и поддерживали канал все эти годы. Для меня честью было начинать с вами, друзья, и продолжать, когда такие разные новые горизонты увлекли нас.
Еще отцы-основатели: Станислав Никольский, Валера Балдин.
Первые ведущие: Марика Ефадзе, Вероника Рис, Иван Лозовой, Дмитрий Побединский, Артур Шарифов.
Сначала просто монтажер, а потом еще и мастер моушен-дизайна Александр Дорошенко.
Сначала друг SciOne, а потом волшебница иллюстраций и обложек для роликов Катя Fairly.
Десятки ученых, волонтеров и просто неравнодушных зрителей участвовали в становлении проекта, помогали, чем могли и давали надежду на будущее.
Спасибо вам, и, как когда-то говорили, низкий поклон.
Спасибо вам, друзья, кто сегодня с нами. Так ты понимаешь, что делаешь то, что кому-то действительно нужно. И это придает сил и вдохновляет. Думаю, лет эдак еще на 10, а то и больше.
P.S.
Выпью-ка яблочного сока по случаю и повспоминаю еще те времена. Кажется, тогда даже воздух был другим. Не хватает его.
Ауяска помогла мышам избавиться от боли не хуже морфина. Но без красочных видений, привыкания и разных токсических эффектов. Для этого пришлось потрудиться уже не индейским колдунам, а учёным.
Ауяска — традиционный южноамериканский напиток, который известен тем, что его использовали с древности в особых, полурелигиозных ритуалах, “меняющих состояние сознания”. Из-за этого было неясно, обезболивающий эффект, о котором сообщали прошедшие его — это просто часть психоделического аффекта, то есть иллюзия, или попутно что-то воздействует как анальгетик. Поэтому исследователи взялись проверить это на мышах.
В своих экспериментах они вводили грызунам разные концентрации аяуаски и сравнивали эффект с обезболивающими препаратами, типа морфина и других. Контрольной группе давали воду. А боль у животных вызывали то инъекциями формальдегида, то горячей водой (хвосты опускали), а иногда даже тонкими нейлоновыми нитями. Знаю, что многие из нас тут почувствуют. Я с вами. Но это отдельная тема.
Оказалось, что при концентрациях уже свыше 600 нанолитров на килограмм массы тела уровень боли (разных типов) радикально снижался (проверяли и по поведению и по другим реакциям, принятым в исследованиях боли на животных). Эффект сохранялся от 5 до 8 часов. А при терапии в течение нескольких дней боль достигала вовсе неразличимого уровня (можно сказать, что исчезала).
Главное, что при таких концентрациях не происходило токсического шурум-бурума, мыши не впадали в особые состояния и продолжали вести себя, как обычно. Что подтверждалось анализами нескольких видов.
Конечно, мыши не люди, и результаты могут и будут, скорее всего, отличаться у нас. Но это исследование дает шанс на появление нового типа обезболивающего — безопасного во всех смыслах и очень эффективного.
Исследование
👾 Подписаться на SciOne 👾
#новости
Открытия, которых мы не просили, но нам точно нужны. Ученые получили новый класс жидких материалов, способных менять свои свойства в реальном времени, то есть их можно в некотором смысле программировать. Неужели, как раз то, что надо для терминаторов Т1000?
Представьте себе жидкость, которая может твердеть и размягчаться, становиться прозрачной или непрозрачной, менять свою вязкость по желанию. Речь идет про особый вид материалов: метаматериалы. Их свойства задаются их структурой, а не составом. Так и в новых “метафлюидах” используется суспензия из небольших эластомерных сфер размером от 50 до 500 микрон, которые деформируются под давлением, радикально изменяя характеристики жидкости, в которую их поместили.
Учёные изготовили сотни тысяч таких высокодеформируемых сферических капсул, наполненных воздухом, и сделали из них суспензию на силиконовом масле. Когда давление внутри жидкости увеличивается, капсулы сжимаются, образуя линзообразную полусферу. Когда давление уменьшается, капсулы возвращаются к своей сферической форме. Этот переход изменяет многие свойства жидкости, в том числе ее вязкость и непрозрачность. Эти свойства можно регулировать, изменяя количество, толщину и размер капсул в жидкости.
На практике это означает, что можно было бы создавать надувную оптику с регулируемой прозрачностью. Или новое поколение жидкостных амортизаторов для автомобилей или шасси самолётов, которые могут по разному рассеивать энергию удара в зависимости от его силы.
Также такая умная жидкость может пригодиться роботам, например, чтобы взаимодействовать с предметами разных форм, габаритов, мягкости без дополнительных датчиков давления и выстраивания сложных петель обратной связи. Только благодаря умной жидкости внутри гидравлических устройств.
Экспериментально авторы показали в этой же работе гидравлического робота-гриппера, который меняет жесткость хвата в зависимости от веса поднимаемого объекта (на втором видео). Там наглядно сравнивается воздух, вода и метажидкость.
Исследование
👾 Подписаться на SciOne 👾
#новости
Вступил в строй самый мощный МРТ в мире. Исследователи не могут нарадоваться, делятся кадрами глубин мозга потрясающей детализации — до нескольких тысяч нейронов на сканирующий "срез".
Для сравнения, самые мощные аппараты, которые вы можете встретить в обычных больницах по всему миру тянут 1,5 или в лучшем случае 3 Теслы. А лежать надо более двух часов, чтобы сделать полноценное обследование, неподвижно. Вот совсем не шелохнувшись. Так что на практике брак в снимках, к сожалению, — самое обычное дело.
Здесь же инженеры собрали для ученых и медиков аппарат, который выдает магнитное поле на 11,7 Тесл. Разницу в детализации вы можете видеть на картинке (его снимок справа). Во многом потому что на нем вся процедура занимает всего около 4 минут.
Правда, есть гигантский такой нюанс. Весит махина 132 тонны, внутри намотано 182 километра сверхпроводящих проводов, которые охлаждаются до -271,35 °C с помощью 7,500 литров жидкого гелия. Словом, монстр, который по карману не всем даже крупным исследовательским центрам. Так что пока на здоровяке будут проводить особо важные научные работы. А там, глядишь, кто-то все же откроет “комнатные” сверхпроводники и тогда конструкция станет намного проще, дешевле и доступнее.
Подробности
👾 Подписаться на SciOne 👾
#новости
Учёные серьёзно приблизились к разгадке “длительного ковида” — когда болезнь растягивается на месяцы или даже годы. Заодно стало ясно, почему возникают многие тяжёлые осложнения после этой инфекции. Открытие прокладывает путь к новым методам лечения.
До сих пор, несмотря на тысячи научных работ с начала пандемии, учёные не понимали, почему так тяжело и долго может протекать COVID-19 во многих клинических случаях.
И вот в новой работе исследователи выяснили, что у некоторых пациентов организм после заражения начинает производить антитела, которые как бы копируют и действуют аналогично крайне важным ферментам, регулирующим кровяное давление, свертываемость крови, воспалительные реакции и другие очень важные процессы. А нашему телу их не надо в таких количествах, тем более с появлением инфекции.
Напомним, вирус SARS-CoV-2 имеет на своей поверхности шиповидный белок, который связывается с ферментом ACE2 на поверхности клеток человека. Функция ACE2 заключается в регулировании кровяного давления; он снижает его, регулируя белок ангиотензин II. Исследователи предположили, что некоторые пациенты начинают производить антитела против шиповидного белка, подобные ACE2. Попытка еще из одним отразить вторжение. Такие антитела работают как ферменты и получили название "абзимы".
Их если и замечали раньше, то не описывали. Теперь же становится ясно, что за них надо взяться очень плотно. Ковид хоть больше не похож на болезнь, способную остановить мир, как это было еще в 2020 году, но он всё еще уносит каждый месяц тысячи жизней, которые можно было бы спасти, а некоторым выжившим не дает восстановиться, работать, учиться, чего тоже можно было бы избежать.
Иллюстрация: модель вируса SARS-CoV-2 (CDC, Alissa Eckert)
Исследование
👾 Подписаться на SciOne 👾
#новости
Представьте, в одно прекрасное утро вы, как обычно, встаёте, погружаетесь в привычные хлопоты и заглядываете в зеркало или смотрите на близкого человека, а перед вами — демон, или Орк из Властелина Колец, или же командор Спок из Стартрека. Подобное происходит в реальности, но крайне редко. Настолько, что про это неврологическое расстройство не слышали даже многие врачи. Оно называется прозопометаморфопсия (коротко — ПМО). Впервые его задокументировали в 1904 году. Но только сейчас ученым удалось детально реконструировать, что видят такие пациенты, а значит, можем и мы посмотреть на мир их глазами.
Такое кошмарное утро однажды приключилось с Виктором Шаррахом: его сосед по квартире оказался демоном. Виктор был напуган и не верил своим глазам. Это важное отличие от пациентов, страдающих разными психозами: в случае ПМО люди не верят в то, что видят. Проявления ПМО сильно различаются от человека к человеку: лица могут казаться вытянутыми, изменить цвет или текстуру, черты вовсе могут меняться местами. Обычно кошмар проходит в течении нескольких недель, однако, как в случае Виктора, может затянуться на годы или даже на всю жизнь.
Так вот он видит “демонически” искаженные лица только при встрече. На фото или картинках — все в порядке. Исследователи воспользовались этим, чтобы свести его описание с картинкой, как это делают при составлении фоторобота. Причем человек-демон находился в комнате и бедный Виктор описывал, что видит, а в это время на ПК фото того же человека “фотошопили” под это описание.
Метод простой, но его впервые догадались применить и прояснили тем самым много нового про очень редкое расстройство. Так выяснилось, что обычные очки с зелёным фильтром позволяют Виктору видеть лица без искажений. Благодаря этому он смог повидаться наконец не с гоблинами, а со своими внучками.
Проблема таких пациентов в том, что они боятся делиться своими симптомами: “похоже тебе пора лечиться, ты сходишь с ума” — это реакции, с которыми они могут столкнуться и сталкиваются, если раскрываются. Поэтому учёные, которые занимаются ПМО, сделали специальный сайт про это расстройство, где можно узнать про его разные формы, проявления и актуальные исследования, а еще можно связаться с исследователями и, возможно, поделиться своим опытом, что поможет продвинуться в понимании патологии.
Само исследование
Сайт про ПМО
👾 Подписаться на SciOne 👾
#новости