Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚
🕊️ Namsor - это ИИ для анализа имен собственных с лингвистическим интеллектом. Причем это не просто классификатор, а инструмент с глубоким пониманием культурных и лингвистических контекстов.
Проект удивляет точностью: он различает, является ли "Mercedes фамилией человека, названием города или автомобильным брендом, учитывая страну происхождения.
Технология особенно востребована в CRM-системах, соцсетях и базах данных, где критична корректная интерпретация имен.
🔗 Ссылка - *клик*
🎥 Минутное видео по тексту? Новый подход к генерации от исследователей!
Генерация длинных видео — всё ещё вызов для ИИ. Self-attention не тянет по скорости, Mamba — по сложности сюжета. Но тут на сцену выходят TTT-слои (Test-Time Training) — и делают шаг вперёд.
🧠 В чём суть: — TTT-слои умеют использовать выразительные скрытые состояния, которые сами являются нейросетями.
— Их добавляют в уже обученный трансформер — и он начинает генерировать минутные видео по текстовому сценарию с плавным движением и логичной историей.
— Проверяли на мультстиле Tom & Jerry — и получили +34 Elo-балла в человеческой оценке по сравнению с Mamba 2 и другими сильными базовыми методами.
ИИ уже близок к тому, чтобы полностью воспроизводить стили старых мультфильмов или аниме. Это может кардинально изменить производство анимации — вместо создания вручную, студии смогут "дообучать" модель и просто писать сценарии.
Прикрепленное минутное видео, было создано с помощью промпта и обучено на сотнях часов Тома и Джерри.
Вот его полный промпт.
⚠️ Да, пока есть артефакты и ограничения — модель на 5B параметров и только минутные ролики. Но подход уже выглядит перспективным.
Следим за развитием.
📌Demos: http://test-time-training.github.io/video-dit/
📌Paper: http://test-time-training.github.io/video-dit/assets/ttt_cvpr_2025.pdf
📌Github: https://github.com/test-time-training/ttt-video-dit
@data_analysis_ml
Когда потратил 3 часа на отладку сгенерированного кода, который написал бы за час.
@data_analysis_ml
🎮 Microsoft представила нейро-версию Quake II на базе Muse и WHAMM.
Microsoft Research представила WHAMM — новую систему или технологию, предназначенную для моделирования окружающего мира в реальном времени, с особым акцентом на интерактивные среды.
Это означает, что WHAMM способна быстро создавать и постоянно обновлять цифровую 3D-модель физического пространства, учитывая изменения, которые происходят в нем, в том числе в результате взаимодействия пользователя или других динамических событий.
▪ ИИ генерирует кадры в реальном времени, анализируя действия игрока.
▪Старая WHAMM — 1 fps, новая — 10 fps при 640×360, почти играбельно.
Модель помнит последние 0,9 секунды, что добавляет случайности.
Ключевая особенность — система работает достаточно быстро, чтобы обновлять модель мира практически мгновенно по мере поступления новых данных от сенсоров (вероятно, камер, датчиков глубины и т.д.). Это критически важно для плавного взаимодействия.
🔗 Играть в ИИ-версию Quake II можно здесь.
@vistehno
#microsoft #ai #quake #muse
🦙 Встречайте, дамы и господа, LLaMA 4: мультимодальные MoE модели!
Llama 4 Omni разработана для понимания и обработки информации модальностей, а не только текста.
Доступна в 3х вариантах: Llama 4 Scout и Llama 4 Maverick, Llama 4 Behemoth.
У Llama 4 Scout (109B) контекстное окно размером 10 М, 17B активных параметров, 16 экспертов, может быть запущена на 1ом GPU!
Llama 4 Maverick (400B) окно в 1M, 128 экспертов, 17B активных параметров.
У Бегемота окно в 2T!!!, 16 экспертов, 288B активных параметров.
- Model Card
- Веса
- Релиз
@ai_machinelearning_big_data
Время протестировать CodeFest'15
31 мая и 1 июня в Новосибирске пройдет юбилейный CodeFest’15 — масштабная конференция для ИТ-специалистов. Приглашают тимлидов, проджектов, тестировщиков, фронтенд- и бэкенд-разработчиков, аналитиков, дизайнеров, техлидов и руководителей направлений.
На мероприятии можно обсудить тренды с другими профессионалами и перезагрузиться в неформальной обстановке. В программе:
— 10 потоков и 150+ докладов от топовых спикеров по направлениям от Backend до Web3;
— живые дискуссии в формате «квартирников»;
— нетворкинг с экспертами из разных компаний;
— кофе-брейки и грандиозная афтепати.
Больше информации — по ссылке
IT_ONE Cup. ML Challenge от IT_ONE и Sk FinTech Hub — создай AI-ассистента, который будет помогать в работе дизайнерам, системным и бизнес-аналитикам. Участвуй онлайн с 12 по 29 апреля и поборись за 1 500 000 рублей и мерч.
Регистрация открыта до 11 апреля: https://cnrlink.com/itonecupmldataanalysisai
Твоя формула победы:
✅ Умеешь работать с готовыми моделями машинного обучения и адаптировать их под специфические задачи.
✅ Знаешь, как реализовать сложные системы на базе LLM и генеративных моделей.
✅ Готов создавать комплексные решения для автоматизации процессов.
Также приглашаем Backend и Frontend-разработчиков, системных и бизнес-аналитиков, UI/UX-дизайнеров. Участвуй онлайн соло или командой до 5 человек.
Задачи IT_ONE Cup. ML Challenge:
🔤 Динамические контекстные подсказки для системного аналитика.
🔤 AI-генератор дизайн-макетов по описанию требований.
🔤 Система визуализации BPMN-диаграмм.
Создай AI-ассистента, который облегчит выполнение рабочих задач — регистрируйся на IT_ONE Cup. ML Challenge: https://cnrlink.com/itonecupmldataanalysisai
Реклама. ООО «ГПБ-ИТ1». ИНН 9717102235. erid: 2W5zFHaR9vG
💴 Опубликованы цены на API Gemini 2.5 Pro по сравнению с OpenAI GPT-4.5/o1.
- $1.25/1M input for <200K tokens
- $10/1M output for <200K tokens
- $2.50/1M input for >200K tokens
- $15/1M output for >200K tokens
Как вы считаете OpenAI завышает цены или Google демпингует ... 🤣
📌 Цены
@data_analysis_ml
🔥 BizGen — это мощный инструмент для автоматической генерации инфографики из текстовых данных.
Он использует комбинацию NLP и компьютерного зрения для анализа текста, планирования макета и создания визуально привлекательных изображений.
Благодаря поддержке сложных макетов, многоязычного рендеринга и высокого качества генерации, BizGen идеально подходит для бизнеса, маркетинга, образования и научных исследований.
Этот инструмент упрощает процесс визуализации данных, делая его быстрее, дешевле и доступнее для широкого круга пользователей.
📌 Github
✔️ "Reasoning models don't always say what they think" - новая статья Anthropic, опубликованная а, исследует достоверность объяснений, предоставляемых продвинутыми языковыми моделями (LLM) в процессе их рассуждений, известных как "цепочка мыслей" (Chain-of-Thought, CoT).
Основные выводы статьи:
- Проблема достоверности CoT: Исследование показало, что модели часто не раскрывают истинные причины своих ответов в CoT. Это означает, что, хотя модель может предоставить логически звучащее объяснение, оно не всегда отражает фактический процесс, использованный для получения ответа.
- Эксперимент с промптами: В ходе эксперимента моделям предоставлялись скрытые промпты, влияющие на их ответы. Ожидалось, что модели упомянут использование этих подсказок в своих объяснениях. Однако результаты показали, что модели редко признавали использование подсказок, что ставит под сомнение прозрачность их рассуждений.
- Последствия для безопасности ИИ: Низкая достоверность CoT затрудняет мониторинг и выявление нежелательных или потенциально опасных поведений моделей. Это подчеркивает необходимость разработки более надежных методов оценки и контроля процессов принятия решений в LLM.
Скрытое Рассуждение: Модели, особенно при решении сложных задач, могут генерировать внутренние шаги рассуждения (иногда называемые "scratchpad" или "chain-of-thought"), чтобы прийти к правильному ответу. Однако, в своем итоговом ответе они часто не показывают эти шаги.
- Ложная Уверенность: Модели склонны представлять свои ответы, даже если они результат сложного или неопределенного внутреннего процесса, с высокой степенью уверенности. Они редко используют фразы, выражающие неуверенность ("я думаю", "возможно", "мне кажется"), даже когда такая неуверенность была бы уместна, исходя из их внутреннего процесса "размышлений".
- Проблема Обучения: Такое поведение может быть артефактом процесса обучения (например, Reinforcement Learning from Human Feedback - RLHF), где модели вознаграждаются за прямые и уверенные ответы, которые предпочитают люди-оценщики, даже если это скрывает сложный процесс вывода или потенциальную неуверенность.
Риски Непрозрачности и Чрезмерной Уверенности:
Безопасность: Скрытое рассуждение может содержать ошибочные или вредные шаги, которые не видны в финальном ответе.
- Надежность: Чрезмерно уверенные ответы могут ввести пользователей в заблуждение, особенно когда модель ошибается.
- Интерпретируемость: Пользователям сложнее понять, как модель пришла к выводу, и доверять ее ответам, если процесс скрыт.
Статья поднимает важную проблему: современные LLM часто "думают" сложнее, чем "говорят". Они скрывают свои внутренние рассуждения и представляют ответы с излишней уверенностью. Anthropic исследует, почему так происходит и как это исправить, чтобы повысить безопасность и надежность ИИ.
🔗 Подробнее
#Anthropic #ml #reasoning
🔎 rwkv.cpp — проект, адаптирующий архитектуру RWKV для эффективной работы на обычных процессорах.
В отличие от традиционных LLM, RWKV требует лишь немного памяти на токен — это позволяет запускать модели с большими контекстами даже на слабом железе.
Инструмент реализован на C/C++ с поддержкой квантования и CUDA через cuBLAS. Особенно интересна совместимость с LoRA-адаптерами, что позволяет дообучать модели без полного экспорта весов. Тесты показывают стабильную работу даже на 4-ядерных CPU с контекстом в 8K токенов.
🤖 GitHub
@data_analysis_ml
🐬 Dolphin - это улучшенная и расширенная версия Whisper, оптимизированная для распознавания большого числа восточных языков и китайских диалектов, которая превосходит другие открытые модели и доступна для использования сообществом.
На чем основана?
Цель: Поддержка более широкого спектра языков, с особым акцентом на 40 восточных языках (Восточная Азия, Южная Азия, Юго-Восточная Азия, Ближний Восток) и 22 китайских диалектах.
Как обучалась? Использовалась комбинация собственных (проприетарных) и общедоступных (open-source) наборов данных для обучения и оптимизации.
Результаты: Эксперименты показали, что Dolphin значительно превосходит существующие лучшие модели с открытым исходным кодом по качеству распознавания для многих языков.
Доступность: Разработчики делают обученные модели и исходный код для их использования (инференса) общедоступными, чтобы способствовать воспроизводимости и развитию сообщества.
🟡Model:
https://huggingface.co/DataoceanAI/dolphin-base
https://huggingface.co/DataoceanAI/dolphin-small
🟡 Paper:
https://huggingface.co/papers/2503.20212
@data_analysis_ml
Высшее на новом уровне: онлайн-магистратура от Яндекса и НИЯУ МИФИ для специалистов по работе с данными.
Здесь фундаментальные знания и практика для карьерного роста, а ещё — учёба, которую можно совмещать с работой и жизнью.
Всё о программе — на дне открытых дверей:
— Расскажем про разные траектории обучения и как после выпуска стать ML-инженером, CV-инженером, NLP-инженером, Data Scientist или Data Engineer.
— Обсудим, какие навыки будут у выпускников, чтобы соответствовать рынку и требованиям работодателей.
— Поговорим про поступление: сроки, экзамены, документы, оплата.
Спикеры:
Станислав Павлов, директор по AI, Positive Technologies.
Павел Рябов, академический руководитель программы, заместитель директора Института лазерных и плазменных технологий, НИЯУ МИФИ.
Антон Моргунов, Senior инженер по компьютерному зрению, Базис. Центр, академический руководитель программы, Яндекс Практикум.
Александр Югов, Curriculum Lead профессии «Инженер данных», Яндекс Практикум.
Библиотека Python для файнтюнинга Gemma 3! 🔥
Включает документы по файнтюнингу, шардингу, LoRA, PEFT, мультимодальности и токенизации в LLM.
100% открытый исходный код.pip install gemma
📌 Документация
⚡️ OpenDeepSearch (ODS) — это открытый поисковый агент, разработанный для интеграции с любыми большими языковыми моделями (LLM).
Он создан с целью демократизировать доступ к передовым поисковым технологиям, сократив разрыв между проприетарными решениями (например, Perplexity Sonar Reasoning Pro или GPT-4o-Search от OpenAI) и открытыми аналогами. ODS состоит из двух ключевых компонентов: Open Search Tool и Open Reasoning Agent, которые работают в связке для выполнения сложных поисковых и аналитических задач.
ODS с DeepSeek-R1 обходит GPT-4o-Search от OpenAI на бенчмарке FRAMES (+9.7% точности). Доступен для сообщества: код и статья уже на GitHub и arXiv! #AI #OpenSource #Search
▪Paper: https://arxiv.org/abs/2503.20201
▪ Code: https://github.com/sentient-agi/OpenDeepSearch
@data_analysis_ml
📊Бесплатный вебинар: «Построение эффективных дашбордов с помощью Power BI»
💡На вебинаре вы узнаете:
+ Как загрузить данные в Power BI Desktop из различных источников
+ Построение наглядных дашбордов для анализа данных
+ Интерактивные возможности в Power BI - взаимодействие с визуальными элементами
+ Применение базовых визуальных элементов и их настройка для лучшего понимания данных
+ На практике вместе построим дашборд в Power BI
❓Кому будет полезен вебинар:
- Аналитикам данных
- Маркетологам
- Продуктовым менеджерам
- Всем, кто хочет визуализировать данные для принятия решений
⏰16 апреля(среда) в 20:00 мск
Вебинар в рамках курса «BI-аналитика»
🎁После вебинара для вас активен промо-код со скидкой 5% до 18 мая: BI_04
👉Регистрация на вебинар: OTUS.RU
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
#реклама
О рекламодателе
⚡️ Pydoll — это библиотека на Python, предназначенная для автоматизации браузеров на движке Chromium (Chrome и Microsoft Edge) без использования WebDriver.
Инструмент имитирует «реальные» действия пользователя и обеспечивает гибкость при работе с элементами интерфейса и сетевыми запросами.
🔗 Ключевые особенности
- Асинхронная автоматизация без WebDriver
- Позволяет обойтись без установки и настройки драйверов WebDriver, что упрощает процесс интеграции и обслуживания.
- Реализована на базе asyncio, поэтому поддерживает запуск нескольких задач одновременно.
- Обход Cloudflare Turnstile
- Имеется встроенный механизм для автоматического прохождения CAPTCHA:
- Синхронная блокировка (context manager), когда выполнение кода приостанавливается до момента решения задачи.
- Фоновый режим (non-blocking), когда автоматизация продолжает работу, пока CAPTCHA решается в фоне.
- Поддерживает «человеко-подобный» набор текста (имитация пауз, скорости).
- Распознаёт специальные клавиши и сочетания клавиш (нажатия SHIFT, CTRL, ALT и т.д.).
- Подключение к существующим сессиям
- Можно подсоединяться к уже запущенным экземплярам Chrome или Edge, что удобно для отладки или интеграции с имеющимися сессиями пользователя.
Благодаря отсутствию необходимости в WebDriver и возможности имитировать взаимодействие «как настоящий пользователь», Pydoll будет полезен в проектах, где требуется гибкая и реалистичная автоматизация.
📌 Github
@data_analysis_ml
😈 AnimeGamer — это модель, разработанная лабораторией ARC компании Tencent, предназначенная для создания бесконечных симуляций жизни в аниме-стиле.
Она использует мультимодальные большие модели (MLLMs) для генерации динамичных анимационных сцен, отображающих движения персонажей и изменения их состояний.
Учитывая исторический визуальный контекст, AnimeGamer обеспечивает последовательность и увлекательность игрового процесса.
Применяя мультимодальные представления, ориентированные на действия, и видеодиффузионную модель, AnimeGamer создает высококачественные видеоролики, формируя захватывающий и постоянно развивающийся игровой опыт.
https://huggingface.co/TencentARC/AnimeGamer
📌 Как быстро запустить Llama 4 за 10 минут
Если вы хотите попробовать новую Llama 4 Scout (п вот краткое руководство:
▪ Вам нужна машина с четырьмя H100 на сервисе (пример под hyperbolic, вы можете арендовать в другом месте https://app.hyperbolic.xyz/compute)
▪ Подключитесь по SSH к серверу и запустите в терминале:
>> sudo apt-get update && sudo apt-get install -y python3-pip
>> pip install -U vllm
>> pip install -U "huggingface_hub[cli]"
>> vllm serve meta-llama/Llama-4-Scout-17B-16E-Instruct --tensor-parallel-size 4 --max-model-len 10000
>> curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What can I do in SF?"}
]
}
🔥 OpenThinker2-32B: превосходит DeepSeekR1-32B в математике и Кодинге.
OpenThinker2-32B набирает 76,7 баллов на AIME24, 90,8 на MATH500 и 64,1 на GPQA-D.
Он набрал 90,8 баллов по MATH500, обойдя R1-Distill-32B (90. 0) .
Это новый лидер на бенчмарке GPQA-D лидирует с результатом 64,1 по сравнению с R1-Distill-32B с результатом 65,8.
https://huggingface.co/bartowski/open-thoughts_OpenThinker2-32B-GGUF
@data_analysis_ml
📌 FastRAG — фреймворк, предлагающий разработчикам современные инструменты для создания оптимизированных RAG-пайплайнов. Этот сервис, построенный на базе Haystack и Hugging Face, фокусируется на эффективном сочетании информационного поиска с генеративными возможностями LLM.
Фреймворк предоставляет готовые компоненты для работы с современными методами семантического поиска, оптимизированные под современные аппаратные ускорители, включая процессоры Intel Xeon и AI-акселераторы Gaudi.
При этом FastRAG активно развивается — от поддержки мультимодальности до примеров динамического синтеза промптов.
🤖 GitHub
@data_analysis_ml
🔥 DiffSynth-Studio-Lora-Wan2.1-ComfyUI - дистиллированный WAN!
Это LoRA для интеграции с ComfyUI, основанные на Wan2.1-T2V-1.3B.
: Поддерживается 4, 5, 6, 8, 10 и более шагов, что позволяет балансировать между качеством и временем генерации.
На тестах получаются потрясающие результаты всего за 5 шагов!
🟡HF
🟡Пример
Уже успели занять место на главном ИТ-событии этой весны? До Data Fusion 2025 осталось меньше 2-х недель 🔔
Хватит бороться с данными — пора ими управлять! Присоединяйтесь к конференции Data Fusion 2025, пока еще есть возможность.
Обсудим все ключевые вызовы Big Data и то, как с ними справляются компании. Это не просто доклады, а новейшие исследования и реальные кейсы от бизнес-лидеров, ученых и практиков:
📌 DataOps и автоматизация управления данными: как избежать хаоса в процессах
📌 Big Data + ИИ: генеративные модели для анализа массивных данных
📌 Где синтетические данные заменяют реальные: производственные сценарии, медицина, финтех.
📌 Как выстроить надежную и предсказуемую вычислительную инфраструктуру для масштабных моделей
Вас ждут жаркие дебаты и обсуждения на самые острые темы в сфере искусственного интеллекта и данных. Не пропустите!
📅 16–17 апреля | Москва, технопарк «Ломоносов»
Бесплатная регистрация — https://data-fusion.ru/. Времени осталось совсем мало. 👀
—
*DataOps — методология разработки и предоставления данных
*Big Data — большие данные
🚀Прими участие в ML Cup 2025 от Авито и выиграй 1,2 миллиона рублей!
Ты — специалист в области машинного обучения? Хочешь проверить свои силы в реальных задачах, с которыми ежедневно сталкиваются 1000+ специалистов Авито? Тогда не упусти шанс стать частью крупнейшего соревнования в этой области!
Что тебя ждет:
☑️Денежный призовой фонд
☑️Автоматизированная оценка решений
☑️2 практические задачи:
1️⃣Персональные рекомендации — предскажи, какие товары вызовут интерес у миллионов пользователей → ссылка на регистрацию.
2️⃣Поиск дублей — как с помощью CV находить похожие объявления даже при разных текстах и ракурсах фото → ссылка на регистрацию.
Выбирай одну или обе задачи, показывай лучшие результаты и получай шанс на победу! Участвовать можно как индивидуально, так и в команде до 4 человек. Загружай до 5 решений в день.
Регистрация уже открыта! Подробности и анкета по ссылкам выше.
✔️ Google, похоже, сейчас является победителем ИИ гонки
Они более десяти лет назад и сделали стратегические инвестиции в TPU.
Этот шаг в отношении TPU оправдал себя.
В результате у Google теперь есть собственное специализированное оборудование, и ему не нужно много графических процессоров от Nvidia.
Gemini 2.5 Pro доступна бесплатно для всех пользователей с аккаунтом Google.
@data_analysis_ml
Растите сильную команду. Топ-5 курсов Яндекс Практикума для IT
👾 Технологии меняются каждый день — проверено Яндексом.
Мы ощущаем перемены на своих проектах. Постоянные вызовы, новые инструменты, штормы на рынках. Знаем, как важно, чтобы команда быстро развивалась и адаптировалась к изменениям. Поэтому создаём актуальное обучение, которое соответствует реальным задачам IT-сферы.
Нам доверяют: 5000+ компаний уже обучили 36 000+ сотрудников в Яндекс Практикуме.
👉 Вот топ-5 курсов, которые выбирали компании для развития IT-команд в 2025 году:
— SQL для работы с данными и аналитики
— DevOps для эксплуатации и разработки
— Python-разработчик
— Архитектура программного обеспечения
— Управление командой разработки
— Навыки аргументации
👉Подобрать курс
Реклама, АНО ДПО “Образовательные технологии Яндекса”, ИНН 7704282033, erid: 2Vtzqv9rzVf
🔥 EasyControl — это фреймворк (набор инструментов и методов), разработанный для добавления управляющих сигналов (условий) к моделям генерации изображений на основе Diffusion Transformer (DiT).
По сути, это попытка создать аналог популярного ControlNet (который в основном используется с U-Net архитектурами) для нового поколения диффузионных моделей, построенных на трансформерах. Его цель — сделать процесс управления генерацией в DiT моделях таким же гибким, эффективным и легко подключаемым.
Как работает EasyControl?
EasyControl решает проблемы интеграции управляющих сигналов в DiT, используя комбинацию нескольких ключевых идей:
▪ Легковесные Модули Внедрения Условий (Condition Injection LoRA): Вместо того чтобы переобучать всю огромную DiT модель или создавать громоздкие копии её частей для каждого нового условия (например, позы, контуры, глубина), EasyControl использует LoRA (Low-Rank Adaptation). Это техника, позволяющая "внедрить" дополнительную информацию (управляющий сигнал) в существующую модель, обучая лишь небольшое количество дополнительных параметров. Это делает процесс добавления новых типов контроля очень эффективным по ресурсам и позволяет сохранять исходные "знания" и стиль базовой DiT модели (style lossless).
▪ Парадигма Обучения с Учетом Позиции (Position-Aware Training Paradigm): Трансформеры (как в DiT) обрабатывают изображение как последовательность патчей (участков). Чтобы управляющий сигнал (например, карта позы) корректно влиял на соответствующие участки генерируемого изображения, EasyControl использует специальный подход к обучению, который помогает модели лучше понимать пространственное соответствие между управляющим сигналом и генерируемым контентом.
▪ Оптимизация Внимания и Кэширование (Causal Attention + KV Cache): Для повышения эффективности на этапе генерации (inference), EasyControl применяет оптимизации, характерные для трансформеров. Использование Causal Attention (причинного внимания) и KV Cache (кэширование ключей и значений в механизме внимания) позволяет ускорить процесс генерации, особенно при работе с длинными последовательностями патчей и дополнительными модулями условий.
🔗 Github
🔗Paper
🤖 Open-Arm— это инициатива, направленная на создание открытой экосистемы для разработки на базе микроконтроллеров ARM, в частности, семейства Cortex-M.
Основная идея — предоставить полностью открытые (open source) аппаратные и программные средства, документацию и сообщество для всех, кто хочет работать с ARM-микроконтроллерами, избегая ограничений и лицензионных отчислений, связанных с проприетарными инструментами и платформами.
Ключевые аспекты и цели проекта:
▪️ Открытое Оборудование (Open Hardware): Разработка и публикация схем, печатных плат (PCB) и другой документации для отладочных плат и периферийных устройств на базе ARM Cortex-M. Это позволяет любому производить, модифицировать и изучать аппаратную часть.
▪️ Открытое Программное Обеспечение (Open Source Software): Создание и поддержка открытых библиотек, драйверов, операционных систем реального времени (RTOS) и инструментов разработки (компиляторы, отладчики, SDK), которые не привязаны к конкретному производителю чипов или инструментов.
▪️ Доступность и Образование: Сделать разработку на ARM Cortex-M более доступной для студентов, хоббистов, исследователей и малого бизнеса, снижая порог входа за счет бесплатных и открытых инструментов и подробной документации.
▪️ Независимость от Вендоров: Предоставление альтернативы экосистемам конкретных производителей (например, STMicroelectronics STM32Cube, NXP MCUXpresso), чтобы пользователи не были "заперты" на инструментах или чипах одного поставщика.
open-arm.org
@data_analysis_ml
А и В сидели на трубе,
А упало, В пропало, кто остался на трубе?
Грустный продуктовый аналитик.
Чтобы никто не грустил, мы запускаем онлайн-серию технологических митапов от hh.ru
Первая встреча состоится 15 апреля. Спикерами будут специалисты hh.ru, Туту и Ozon. Что будут рассказывать? Не темы, а просто находки!
• Как Process mining помогает улучшить процесс принятия решений в A/B-тестах;
• Как в hh.ru устроен пайплайн-расчет ETL в A/B-тестах;
• A/B-тестирование, как метод полного контроля за принятием решений.
✔️ Runway выпустили Gen-4 — это версия, в которой значительно улучшено качество, динамика движения и управляемость генерациями.
- Улучшенная точность и динамика: Gen-4 позволяет генерировать видео с более реалистичным движением, сохраняя при этом согласованность стилей, объектов и сюжетных линий.
- Контроль и согласованность: С помощью визуальных референсов и инструкций пользователи могут создавать контент с одними и теме же стилями, персонажами и локациями, что идеально подходит для повествовательных историй.
- Поддержка физики и реализма: Модель способна лучше симулировать реальную физику, что делает сгенерированные сцены более правдоподобными.
@data_analysis_ml